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Abstract. We introduce Coma, a formally defined intermediate verification lan-
guage. Specification annotations in Coma take the form of assertions mixed with
the executable program code. A special programming construct representing the
abstraction barrier is used to separate, inside a subroutine, the “interface” part
of the code, which is verified at every call site, from the “implementation” part,
which is verified only once, at the definition site. In comparison with traditional
contract-based specification, this offers us an additional degree of freedom, as we
can provide separate specification (or none at all) for different execution paths.
We define a verification condition generator for Coma and prove its correctness.
For programs where specification is given in a traditional way, with abstraction
barriers at the function entries and exits, our verification conditions are similar
to the ones produced by a classical weakest-precondition calculus. For programs
where abstraction barriers are placed in the middle of a function definition, the
user-written specification is seamlessly completed with the verification conditions
generated for the exposed part of the code. In addition, our procedure can factorize
selected subgoals on the fly, which leads to more compact verification conditions.
We illustrate the use of Coma on two non-trivial examples, which have been for-
malized and verified using our implementation: a second-order regular expression
engine and a sorting algorithm written in unstructured assembly code.

1 Introduction

Consider a simple function, written in some ML dialect, which eliminates the root node
from a binary tree, using an existing library function that merges two trees in one:

type tree = Node tree elt tree | Empty

let removeRoot (t: tree) : tree
= match t with
| Node l _ r → mergeTree l r
| Empty → fail

If we want to use removeRoot in a formally verified program, we need to provide this
code with a specification. In a traditional contract-based approach, this means writing a
precondition and a postcondition, and here is how they would usually look:
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let removeRoot (t: tree) : tree
requires { t ≠ Empty }
ensures { match t with

| Node l _ r → ∀e:elt. e ∈ result ↔ e ∈ l ∨ e ∈ r
| Empty → false }

While this contract does its job, it is rather unpleasant. Not only does it take more space
than the code it describes, it also basically repeats what is already written in the code.
What is more, if we compute a verification condition (VC, for brevity) for the definition
of removeRoot, it will take the form of one match-with formula implying another—or
maybe two nested match-with formulas—and neither is easy to read and to prove.

Some programming languages, like Haskell and Agda, admit multiclause function
definitions, and it is tempting to write our specification in this way, too:

removeRoot (Node l _ r)
ensures { ∀e:elt. e ∈ result ↔ e ∈ l ∨ e ∈ r }

= mergeTree l r

removeRoot Empty = fail

This definition is much nicer. The postcondition in the first clause can refer to the results
of the top-level pattern matching and does not need to do one itself. Furthermore, the
second clause is self-explainable, so that we can omit the specification altogether.

However, from the verification point of view, something unusual is happening here.
As we push the postcondition down the first branch of the pattern matching, we expose
a part of the implementation (namely, the pattern matching itself) to the client code.
Whenever removeRoot is called in our program, the VC for that call needs to perform
the case analysis on the tree parameter in order to access the postcondition. Even more
drastically, the second branch contains no specification at all, and so the caller’s VC has
to “inline” the entire second clause at the call site and prove that it is never reached.

What we did in this definition of removeRoot, is we moved the abstraction barrier
inwards from the entry-exit boundary of a function, and even omitted it entirely on some
of the execution paths. The question is, what are the rules of VC generation for programs
with freely moving abstraction barriers? What if we do more in the exposed part of the
code than just pattern matching or failure?

In this paper, we propose a formalism for computation and specification that intends
to answer this question. We present a programming language called Coma that is small
enough to comfortably study its properties, yet expressive enough to serve as a practical
intermediate verification language for real-life applications. Coma programs are written
in the continuation-passing style—the name Coma is short for Continuation Machine—
which allows us to capture with just a few constructions the standard control structures:
sequence, conditionals, loops, function calls, exception handling.

Specification annotations in Coma take the form of assertions mixed with executable
code. Abstraction barriers are made explicit, as special tags that separate the “interface”
part of a subroutine, which is verified at every call site, from the “implementation” part,
which is verified only once, at the definition site.

Coma is a higher-order language, and the verification conditions for it are proposi-
tions in higher-order logic. These verification conditions can be reduced to first-order
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formulas, suitable for automated proving. For functions that are specified in a tradi-
tional manner, with the specification at the entry-exit boundary, the resulting formulas
are close to those produced by a classical weakest-precondition calculus. However, we
can also benefit from the initial higher-order form of our verification conditions, and
factorize selected subformulas in the process of reduction. In this manner, we can curb
the well-known exponential growth of classical weakest preconditions, and obtain proof
obligations similar to the compact verification conditions of Flanagan and Saxe [7].

We implemented a VC generator for Coma programs and performed several case
studies, two of which are presented below. While in this paper we focus on the pure
fragment, our implementation also supports first-class alias-free mutable variables with
effect inference and monadic translation into the pure core language. This implementa-
tion currently serves as a back-end for Creusot, a tool for deductive verification of Rust
programs [5]. Of particular interest for Creusot is Coma’s ability to automatically infer
the contracts of simple Rust closures (anonymous functions).

To summarize, here are the main contributions of our work:

– an intermediate verification language with higher-order functions and explicit ab-
straction barriers (Section 2);

– a formally defined and proved verification condition generator (Sections 3 and 4);
– a working implementation with numerous added features, including alias-free mu-

table variables, rich function prototypes with specification annotations and variable
binding, compact VC formulas via subgoal factorization, etc. (Section 5);

– two non-trivial case studies: a second-order regular expression engine (Section 6)
and a sorting algorithm written in x86-64 assembly code (Section 7).

2 Syntax and Semantics of Coma

The building blocks of Coma are expressions, which perform computations, and terms,
which represent data. Expressions and terms are distinct syntactic entities: a term can
be passed as an argument to an expression, but an expression cannot reduce to a term.
An expression can be encapsulated in a named or anonymous handler (which is what
we call subroutines), and either invoked directly or passed as a continuation argument
to another expression.

Terms are composed of variables, constants, and pure total operations, provided that
they have the same meaning in executable code and in specification. In theory, it would
be possible to restrict the syntax of terms to variables and literal values, and delegate
all computation to handlers, either predefined or introduced by the user. Still, for the
sake of convenience, we admit in terms a handful of basic operations on unbounded
integers, Booleans, and polymorphic finite sequences and binary trees. To handle type
polymorphism, we treat types as a special kind of data: type expressions are considered
to be terms of type Type, and we do not make a formal distinction between term and
type variables. We denote variables with letters 𝑥, 𝑦, α, β (the latter two being reserved
for types), and terms with 𝑠, 𝑡, 𝜏, 𝜃 (again, the latter two being reserved for types). For
specification, we use first-order formulas, denoted 𝜑 and 𝜓, which may contain variables
and terms, but not handlers. By a slight abuse of notation, Boolean terms are accepted
as atomic formulas.
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type signature: 𝜋, 𝜚 F 𝑥 : 𝜏 𝑔 : 𝜚 parameter list

handler: 𝑘, 𝑜 F ℎ handler symbol
| 𝜋 → 𝑑 anonymous handler

expression: 𝑒, 𝑑 F 𝑘 𝑠 𝑜 handler call
| 𝑒 / ℎ 𝜋 = 𝑑 handler definition
| { 𝜑 } 𝑒 assertion
| ↑ 𝑒 black-box barrier
| ↓ 𝑒 white-box barrier

Fig. 1: Handlers and expressions.

Handlers accept term parameters (which includes type parameters) and handler pa-
rameters, also called continuation parameters or outcomes. The list of formal parameters
of a handler is called its type signature. Since we adopt the continuation-passing style,
handlers do not have return values. Handlers that have no parameters are said to have a
void type signature, written with the symbol □. We use letters 𝜋 and 𝜚 to denote type
signatures, and letters ℎ, 𝑔, 𝑓 for handler names.

We assume to have access to a number of predefined primitive handlers, which form
the “standard library” of Coma. Here are the type signatures of five primitive handlers
that we use throughout this paper:

if : (c:bool) (then:□) (else:□)
unTree : (α:Type) (t:tree α) (onNode:(l:tree α) (v:α) (r:tree α)) (onEmpty:□)

get : (α:Type) (s:seq α) (i:int) (return:(v:α))
halt : □
fail : □

Handler if makes a choice between two continuations, represented by nullary outcomes
then and else, depending on the condition c. Handler unTree inspects a binary tree t:
if it is a node, then its datum and two subtrees are passed to the onNode continuation,
otherwise onEmpty is called. Handler get retrieves the i-th element of sequence s and
passes it to the continuation. This operation is allowed only when i is a valid index of s.
Handler halt stops the computation. Finally, fail is an equivalent of assert false,
it represents code that should never be reached in execution.

By allowing Coma computations to have multiple outcomes, we can represent as
first-class entities what usually has to be hardwired into the core syntax of programming
languages: conditionals and pattern matching. Handlers halt and fail are also note-
worthy in this regard: as they do not accept continuation parameters, we know simply
by looking at their signature that they cannot ever return control to the caller.

Type signatures are identified modulo parameter renaming. For example, the signa-
ture of get can be equivalently written as (β:Type)(l:seq β)(k:int)(ret:(e:β)).
Each parameter binds the corresponding symbol in the types of subsequent parameters.
This only matters for variables, as handler symbols cannot occur in type annotations.
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ℎ:𝜋 ∈ Γ

Γ ⊢ ℎ : 𝜋
(T-Sym)

Γ ⊢ 𝑒 : □
Γ ⊢ □ → 𝑒 : □

(T-Void)

Γ ⊢ 𝑘 𝑠 : (𝑥:𝜏) 𝜋 Γ ⊢ 𝑡 : 𝜏
Γ ⊢ 𝑘 𝑠 𝑡 : 𝜋 [𝑥 ↦→ 𝑡] (T-AppT)

Γ, 𝑥:𝜏 ⊢ 𝜋 → 𝑒 : 𝜋
Γ ⊢ (𝑥:𝜏) 𝜋 → 𝑒 : (𝑥:𝜏) 𝜋 (T-ParT)

Γ ⊢ 𝑘 𝑠 𝑜 : (𝑔:𝜚) 𝜋 Γ ⊢ 𝑘′ : 𝜚
Γ ⊢ 𝑘 𝑠 𝑜 𝑘′ : 𝜋

(T-AppH)
Γ, 𝑔:𝜚 ⊢ 𝜋 → 𝑒 : 𝜋

Γ ⊢ (𝑔:𝜚) 𝜋 → 𝑒 : (𝑔:𝜚) 𝜋 (T-ParH)

Γ ⊢ 𝜑 : Prop Γ ⊢ 𝑒 : □
Γ ⊢ {𝜑} 𝑒 : □

(T-Prop)
Γ, ℎ:𝜋 ⊢ 𝜋 → 𝑑 : 𝜋 Γ, ℎ:𝜋 ⊢ 𝑒 : □

Γ ⊢ 𝑒 / ℎ 𝜋 = 𝑑 : □
(T-Defn)

Γ ⊢ 𝑒 : □
Γ ⊢ ↑ 𝑒 : □

(T-Bbox)
Γ ⊢ 𝑒 : □
Γ ⊢ ↓ 𝑒 : □

(T-Wbox)

Fig. 2: Typing rules for expressions.

The order of a type signature 𝜋 (and, by extension, of any handler with that signature)
is defined recursively: if 𝜋 has no continuation parameters, it is of order zero; otherwise,
the order of 𝜋 is one plus the highest order of its outcomes. The length and order of a type
signature are invariant with respect to type instantiation: handlers can be polymorphic
only in the data types.

Figure 1 presents the syntax of Coma expressions. An expression is an application
of a named or anonymous handler to a list of arguments, on top of which we can put
recursive handler definitions, logical assertions, and two barriers, denoted ↑ and ↓, and
called black-box and white-box, respectively. Handler definitions are placed to the right
of the underlying expression; the slash symbol can be read as “where”. The barriers
guide the generation of verification conditions, and have no effect on execution. The
black-box barrier is the abstraction barrier, which separates the exposed “interface” part
of a handler definition from the hidden “implementation” part. The white-box barrier is
an auxiliary construction that exposes the whole underlying expression. We use letters
𝑒 and 𝑑 to denote expressions, and letters 𝑘 and 𝑜 to denote handlers.

Type signatures serve as types for expressions, enumerating the expected arguments;
in particular, a fully applied handler has type □. Typing contexts, denoted Γ and Δ, are
sequences of type bindings of the form 𝑥:𝜏 and 𝑔:𝜚. A typing context is well-formed if
no symbol is bound twice, and every variable type either is Type or has type Type with
respect to the preceding bindings.

The typing rules for expressions are given in Fig. 2. In a judgement Γ ⊢ 𝑒 : 𝜋, the
typing context is implicitly required to be well-formed. We consider as given the typing
relations for terms and formulas, respectively denoted Γ ⊢ 𝑠 : 𝜏 and Γ ⊢ 𝜑 : Prop; refer to
Appendix A for the fragment used in this paper. Notice that bodies of handler definitions
and anonymous handlers have to be fully applied. Thus, an anonymous handler 𝜋 → 𝑑
always has type 𝜋, modulo parameter renaming. As with type signatures, we identify
expressions modulo renaming of bound variables and handler symbols.

The initial typing context Γprim binds the primitive handlers to their respective type
signatures. An expression 𝑒 is called a program when Γprim ⊢ 𝑒 : □.
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ℎ 𝜋 = 𝑑 ∈ Λ

ℎ 𝑠 𝑜 //Λ −→ (𝜋 → 𝑑) 𝑠 𝑜 //Λ (E-Sym)

((𝑥:𝜏) 𝜋 → 𝑒) 𝑡 𝑠 𝑜 //Λ −→ (𝜋 → 𝑒) [𝑥 ↦→ 𝑡] 𝑠 𝑜 //Λ (E-AppT)

((𝑔:𝜚) 𝜋 → 𝑒) 𝑓 𝑜 //Λ −→ (𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ] 𝑜 //Λ (E-AppH)

((𝑔:𝜚) 𝜋 → 𝑒) (𝜚 → 𝑑 ) 𝑜 //Λ −→ (𝜋 → 𝑒) 𝑜 /𝑔 𝜚 = ↓ 𝑑 //Λ (E-AppC)

□ → 𝑒 //Λ −→ 𝑒 //Λ (E-Void)

↑ 𝑒 //Λ −→ 𝑒 //Λ (E-Bbox)

↓ 𝑒 //Λ −→ 𝑒 //Λ (E-Wbox)

⊨ 𝜑

{𝜑} 𝑒 //Λ −→ 𝑒 //Λ
(E-Prop)

ℎ is not free in 𝑒

𝑒 / ℎ 𝜋 = 𝑑 //Λ −→ 𝑒 //Λ
(E-Gc)

⊨ 𝑠

if 𝑠 𝑘 𝑜 //Λ −→ 𝑘 //Λ
⊨ ¬𝑠

if 𝑠 𝑘 𝑜 //Λ −→ 𝑜 //Λ

⊨ 𝑡 = Node 𝑠1 𝑠2 𝑠3
unTree 𝜏 𝑡 𝑘 𝑜 //Λ −→ 𝑘 𝑠1 𝑠2 𝑠3 //Λ

⊨ 𝑡 = Empty
unTree 𝜏 𝑡 𝑘 𝑜 //Λ −→ 𝑜 //Λ

⊨ 0 ≤ 𝑠2 < length 𝑠1 ⊨ 𝑠1[𝑠2..𝑠2 +1] = [𝑡]
get 𝜏 𝑠1 𝑠2 𝑘 //Λ −→ 𝑘 𝑡 //Λ

Fig. 3: Operational semantics.

We define a small-step operational semantics for Coma as a reduction relation −→.
The reduction rules are shown in Fig. 3. We write 𝑒//Λ to denote series of nested
handler definitions, where Λ is understood as a sequence of definitions, possibly empty.

The rule E-Sym expands handler definitions. We assume that no handler is defined
in Λ twice, as we can always rename bound handlers. The rules E-AppT and E-AppH
perform β-reduction. The rule E-AppC turns an anonymous handler argument into a local
handler definition. This is done in a capture-safe manner: we expect that the handler
symbol 𝑔 does not occur freely in 𝑑 or in 𝑜. The barrier over 𝑑 is needed to preserve the
verification condition of the program, as we show later.

The rule E-Prop requires the asserted formula 𝜑 to be valid before proceeding with
the execution. The validity judgement ⊨ 𝜑 is made within the standard model for our
data types: integers, Booleans, sequences and binary trees. Of course, the validity of
an arbitrary proposition cannot be effectively verified in a practical implementation.
However, our purpose here is different: we define the operational semantics of Coma
in order to state and prove the correctness of our verification procedure—in particular,
that a program with a valid verification condition cannot get stuck during its execution
because of a failed assertion.

The rule E-Void replaces a nullary anonymous handler by its body. The barriers are
ignored during execution (rules E-Bbox and E-Wbox). Finally, the rule E-Gc prunes
the context by removing unreachable handler definitions. This rule commutes with the
rest of the rules, making Coma non-deterministic, yet still strongly confluent.1

1 Modulo semantic equality of answer terms during evaluation of primitive handlers; see below.
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We also postulate the evaluation rules for the primitive handlers. As for E-Prop,
the application of these rules depends on validity of logical properties that express the
pre- and postcondition of the primitives. For example, the Boolean condition of an if
must be valid for the evaluation to progress along the first outcome (as mentioned in the
beginning of the section, we admit Boolean terms as atomic formulas). In the rules for
unTree, the function symbols Node and Empty are the constructors of the tree type. In
the rule for get, we use the (total) slice operator on sequence 𝑠1 to isolate the element
at the position 𝑠2, which must be a valid index in 𝑠1. The answer terms in the rules for
unTree and get can be any ground terms that validate the rule premises: for example,
the expression get int [42] 0 return //Λ can reduce both to return 42 //Λ and
return 6*7 //Λ. While we could introduce some form of normalization to avoid this
syntactical divergence, there is no need for that, since all conditions in our evaluation
rules are expressed in terms of semantic validity. Finally, halt and fail represent the
final states of a computation and cannot be evaluated.

Coma is a type-safe language. Type preservation is easy to establish, either through
a direct proof or by embedding in a more expressive framework like System F𝜔 or CoC.
As for the progress property, the blocking semantics of assertions limits it to programs
with a valid verification condition; and so we defer this subject until Section 4.

We conclude with two examples. First, let us revisit the removeRoot function:

removeRoot (t: tree) (return (s: tree)) =
unTree t ((l: tree) (_: elt) (r: tree) →

↑ mergeTree l r ret
/ ret (s: tree) = { ∀e:elt. e ∈ s ↔ e ∈ l ∨ e ∈ r }

↑ return s)
fail

The normal outcome of removeRoot becomes a continuation parameter named return,
and the argument of return is the tree produced by removeRoot. The implementation
of removeRoot starts with a case analysis on the tree parameter t, using the primitive
unTree hanlder. The two branches of the case analysis are represented, respectively, by
an anonymous handler, which is called when t is a binary node, and the fail primitive,
invoked when t is Empty. The anonymous handler contains a call of mergeTree, which
we assume to be available. The result of mergeTree is passed to a wrapper handler ret
which states the postcondition of the first branch, before calling return.

In this translation of removeRoot, the call of mergeTree is hidden behind the black-
box barrier. The rest of the code—the case analysis by unTree, the failure on an empty
node, and the postcondition describing the return value—is exposed, and will appear in
the verification conditions at the call sites of removeRoot.

In Fig. 4, we show the Russian Peasant Multiplication algorithm written in Coma.
This code is specified in a more traditional manner: the entire implementation of the
product handler is put behind the abstraction barrier. Left in the interface part are
the starting assertion {b ≥ 0}, which naturally becomes the precondition of product,
and the wrapper handler break, which plays the same role as ret in removeTree, and
whose precondition {c = a · b} is the postcondition of product.

The implementation defines and calls a recursive handler named loop. This handler
does not return to the caller: to do that, it would need to receive a continuation parameter
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product (a b: int) (return (c: int))
= { b ≥ 0 }
↑ loop a b 0

/ loop (p q r: int)
= { p · q + r = a · b ∧ q ≥ 0 }
↑ if (q > 0) (→ if (q mod 2 = 1) (→ next (r + p)) (→ next r)

/ next (s: int) = loop (p + p) (q div 2) s)
(→ break r)

/ break (c: int) = { c = a · b } ↑ return c

Fig. 4: Russian Peasant Multiplication in Coma.

and call it, like removeTree and product do. Instead, loop escapes by calling break
at the end of computation. In this respect, loop behaves indeed rather like a loop than a
recursive function: its continuation is determined statically, by its lexical context, rather
than dynamically by its caller. Consequently, there is no distinct postcondition asso-
ciated to loop: in Coma, postconditions are preconditions of continuation parameters
(attached via wrapper handlers like ret and break), and loop has none thereof. And
the precondition of loop, placed above the barrier, is just the loop invariant.

In practice, the majority of Coma programs would be generated by mechanical
translation from existing languages like OCaml or Rust. Part of this translation would be
a CPS transformation, required by our language. While in most cases, this transformation
is not problematic, and allows us to reduce a large number of control structures to just
two—definitions and calls—there are limits to what can be easily translated into Coma.
Consider, for example, an OCaml exception that carries a closure:

exception E of (int → int)

In Coma, exception-raising functions are written as handlers that have multiple contin-
uation parameters: one for the normal outcome, and one for each exception that might
be raised in the handler code. However, if the closures passed with the exception E were
themselves liable to raise E, we would not be able to give them a finite type in Coma.
Incidentally, it is not a coincidence that higher-order exceptions can be used to realize
fixed point computations without explicit recursion.

3 The Logic of Recipes

In their final form, verification conditions for Coma programs are first-order logical
formulas, which we can handle with the usual methods of automated and interactive
theorem proving. Their generation, however, goes through an intermediate stage, where
a preliminary higher-order verification condition, called recipe, is constructed and then
transformed, deterministically and in a finite number of steps, into the first-order form.

Recipes are formulas in a particular variety of higher-order logic, where bound
predicate variables represent verification conditions of individual handlers and can only
appear in a positive position. We denote recipes with letters Φ,Ψ,Υ. The syntax of



Coma, an Intermediate Verification Language with Explicit Abstraction Barriers 9

Φ,Ψ,Υ F ℎ | Φ 𝑠 | λ 𝑥 : 𝜏 .Φ | ∀ 𝑥 : 𝜏 .Φ | Φ ∧ Ψ

| 0 | Φ Ψ | λ 𝑔: 𝜚.Φ | 𝜑 → Φ | ♮ Φ

∀ℎ:𝜋 .Φ ≜ (λℎ:𝜋 .Φ) 0𝜋

0𝜋 ≜ λ𝜋. 0 ∧
∧

( 𝑓:𝑥:𝜏 𝑔:𝜚) ∈ 𝜋

∀𝑥:𝜏.∀𝑔:𝜚. 𝑓 𝑥 �̄�

Fig. 5: Preliminary verification conditions (recipes).

Γ ⊢ 0 : □
(TC-Fail)

Γ ⊢ Φ : 𝜋 Γ ⊢ Ψ : 𝜋
Γ ⊢ Φ ∧ Ψ : 𝜋

(TC-Conj)

ℎ : 𝜋 ∈ Γ

Γ ⊢ ℎ : 𝜋
(TC-Sym)

Γ ⊢ 𝜑 : Prop Γ ⊢ Φ : □
Γ ⊢ 𝜑 → Φ : □

(TC-Impl)

Γ ⊢ Φ : 𝜋
Γ ⊢ ♮Φ : 𝜋

(TC-Neu)
Γ, 𝑥:𝜏 ⊢ Φ : □
Γ ⊢ ∀𝑥:𝜏.Φ : □

(TC-AllT)

Γ ⊢ Φ : (𝑥:𝜏) 𝜋 Γ ⊢ 𝑠 : 𝜏
Γ ⊢ Φ 𝑠 : 𝜋 [𝑥 ↦→ 𝑠] (TC-AppT)

Γ, 𝑥:𝜏 ⊢ Φ : 𝜋
Γ ⊢ λ𝑥:𝜏.Φ : (𝑥:𝜏) 𝜋 (TC-ParT)

Γ ⊢ Φ : (𝑔:𝜚) 𝜋 Γ ⊢ Ψ : 𝜚
Γ ⊢ Φ Ψ : 𝜋

(TC-AppC)
Γ, 𝑔:𝜚 ⊢ Φ : 𝜋

Γ ⊢ λ𝑔:𝜚.Φ : (𝑔:𝜚) 𝜋 (TC-ParC)

Fig. 6: Typing rules for recipes.

recipes is given in Fig. 5. In recipes, handler symbols become predicate variables of the
same name and arity as the original handler. The symbol 0 is the verification condition
of fail, a logical contradiction. The neutralization operator, denoted ♮, suppresses
proof obligations in the underlying recipe. Finally, notice that the antecedent in an
implication is not a recipe, but a first-order formula, which cannot have occurrences of
handler symbols. We write λ𝜋.Φ and ∀𝜋.Φ to denote a series of nested λ-abstractions
or quantifications. By convention, λ□.Φ and ∀□.Φ are the same as Φ.

Universal quantification over a predicate variable is defined recursively, as an instan-
tiation with a joker recipe 0𝜋 . A joker recipe is the verification condition of a handler
of which nothing is known: on any input, the handler may fail or it may call any of its
outcomes with arbitrary arguments. On a void type signature, the joker 0□ is simply 0.

A fully applied recipe is a logical proposition, which is why we disregard the result
type (that is, Prop) and use type signatures once again as types for predicate variables
and recipes. The typing rules are given in Fig. 6. The typing contexts are the same as for
Coma expressions, and, like before, are implicitly required to be well-formed. Notice
that conjunction applies to any two recipes of the same type, and not just to fully applied
recipes. We identify recipes modulo renaming of bound symbols.

The semantics of recipes is given by means of a Krivine-style abstract machine [10]
that converts a fully applied recipe into a first-order formula, where all bound predicate
variables are eliminated. We have chosen this approach both for theoretical and practical
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reasons. First, the properties of recipes are naturally proved using logical relations [15],
which are straightforward to express in this setting. Second, our implementation of a
verification condition generator for Coma is based on the same abstract machine. In the
rest of the section, we introduce this evaluator and establish some of its properties.

A cell is a triplet ⟨𝑏,Σ,Φ⟩, where Φ is a recipe, Σ a cell context, binding every free
handler symbol in Φ to a cell, and 𝑏 a Boolean value. Such a cell can be converted into
a recipe by replacing the free handler symbols in Φ with the corresponding converted
cells from Σ. We assign the type signature of the resulting recipe to the initial cell. In
what follows, we denote cells with letters 𝐶 and 𝐷, and assume that all cells and recipes
under consideration are well-typed.

The depth of a cell 𝐶 = ⟨𝑏,Σ,Φ⟩ is zero if its cell context Σ is empty; otherwise, it
is one plus the maximum depth of the cells in Σ. The neutralization of 𝐶, denoted ♮𝐶,
is the cell ⟨⊤, ♮Σ,Φ⟩, where ♮Σ is obtained by neutralizing every cell in Σ. Obviously,
neutralization does not affect the type or depth of a cell.

We associate a specification recipe to each primitive handler:

Ψif ≜ λc:bool. λthen:□. λelse:□. (c → then) ∧ (¬c → else)
ΨunTree ≜ λα:Type. λt:tree α . λonNode: (l:tree α) (v:α) (r:tree α) . λonEmpty:□.

(∀l:tree α .∀v:α .∀r:tree α . t = Node l v r → onNode l v r) ∧
(t = Empty → onEmpty)

Ψget ≜ λα:Type. λs:seq α . λi:int. λreturn: (v:α) .
0 ≤ i < length s ∧ ∀v:α . s[i..i+1] = [v] → return v

Ψhalt ≜ ♮0

Ψfail ≜ 0

Σprim ≜ [if ↦→ ⟨⊥,∅,Ψif⟩, unTree ↦→ ⟨⊥,∅,ΨunTree⟩, get ↦→ ⟨⊥,∅,Ψget⟩,
halt ↦→ ⟨⊥,∅,Ψhalt⟩, fail ↦→ ⟨⊥,∅,Ψfail⟩]

The initial cell context Σprim binds primitive handlers to their respective specifications.
A stack is a mixed sequence of terms and cells. An empty stack is denoted 𝜀. The

neutralization of a stack ℓ, denoted ♮ℓ, is obtained by neutralizing every cell in ℓ. We
say that a stack is aligned with a cell, when the length of the stack and the types of its
elements coincide with the cell’s signature. In other words, an aligned stack contains
appropriate arguments for the cell.

An 𝑛-ary relation 𝑅 on same-typed cells holds on stacks ℓ1, . . . , ℓ𝑛 when they all have
the same length and type signature, and for each position 𝑖, if ℓ1𝑖 , . . . , ℓ𝑛𝑖 are terms, then
they are all identical, and if they are cells, then both 𝑅(ℓ1𝑖 , . . . , ℓ𝑛𝑖) and 𝑅(♮ℓ1𝑖 , . . . , ♮ℓ𝑛𝑖)
are true. Similarly, 𝑅 holds on cell contexts Σ1, . . . , Σ𝑛 when they bind the same handler
names, and for every bound ℎ, both 𝑅(Σ1 (ℎ), . . . , Σ𝑛 (ℎ)) and 𝑅(♮Σ1 (ℎ), . . . , ♮Σ𝑛 (ℎ))
are true. It is easy to see that 𝑅(Σ1, . . . , Σ𝑛) implies 𝑅(♮Σ1, . . . , ♮Σ𝑛), as ♮♮𝐶 = ♮𝐶.

As a special case of the above, any property of cells is said to hold for a stack ℓ or
a cell context Σ whenever for every cell 𝐶 in ℓ or Σ, both 𝐶 and ♮𝐶 have this property.
Furthermore, if the property holds for a cell context Σ, then it also holds for ♮Σ.

The evaluation operator ◦, defined in Fig. 7, applies a cell to an aligned stack and
produces a first-order logical formula. In the rule for ∀𝑥:𝜏.Φ, we assume that 𝑥 does
not occur in the cell context Σ, to avoid collisions.
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⟨𝑏, Σ, 0⟩ ◦ 𝜀 ≜ 𝑏 ⟨𝑏, Σ,Φ∧Ψ⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ ℓ ∧ ⟨𝑏,Σ,Ψ⟩ ◦ ℓ
⟨𝑏, Σ, ℎ⟩ ◦ ℓ ≜ Σ(ℎ) ◦ ℓ ⟨𝑏, Σ, 𝜑 → Φ⟩ ◦ 𝜀 ≜ 𝜑 → ⟨𝑏,Σ,Φ⟩ ◦ 𝜀

⟨𝑏, Σ, ♮Φ⟩ ◦ ℓ ≜ ⟨⊤, ♮Σ,Φ⟩ ◦ ℓ ⟨𝑏, Σ,∀𝑥:𝜏.Φ⟩ ◦ 𝜀 ≜ ∀𝑥:𝜏.⟨𝑏,Σ,Φ⟩ ◦ 𝜀
⟨𝑏, Σ,Φ 𝑠⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ 𝑠, ℓ ⟨𝑏, Σ, λ𝑥:𝜏.Φ⟩ ◦ 𝑠, ℓ ≜ ⟨𝑏, Σ,Φ[𝑥 ↦→ 𝑠]⟩ ◦ ℓ
⟨𝑏, Σ,ΦΨ⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ ⟨𝑏,Σ,Ψ⟩, ℓ ⟨𝑏, Σ, λℎ:𝜋.Φ⟩ ◦ 𝐶, ℓ ≜ ⟨𝑏, Σ ⊎ [ℎ ↦→ 𝐶],Φ⟩ ◦ ℓ

Fig. 7: Recipe evaluation.

Theorem 1. The evaluation operator ◦ is defined on all aligned cells and stacks.

Proof. We say that a cell 𝐶 is normalizing if for any aligned normalizing stack ℓ, the
evaluation 𝐶 ◦ ℓ is defined. This definition is well-founded, because every cell in ℓ is
of lower order than 𝐶. Then we need to show that all cells (and, therefore, all stacks)
are normalizing. In fact, it suffices to prove that every cell ⟨𝑏, Σ,Υ⟩ is normalizing, if
its cell context Σ is normalizing. Once this is established, a simple induction over cell
depth allows us to conclude.

We proceed by induction over the size of Υ, counting only the subrecipes, so that
term substitutions do not affect the size. Take an arbitrary aligned normalizing stack ℓ.

Case Υ is 0. As 0 is □-typed, ℓ has to be empty, and ⟨𝑏, Σ, 0⟩ ◦ 𝜀 is defined.
Case Υ is ℎ. Since every cell in Σ is normalizing, the evaluation Σ(ℎ) ◦ ℓ is defined.
Case Υ is ♮Φ. The context ♮Σ is normalizing, and the induction hypothesis applies.
Case Υ is ΦΨ. Let 𝐷 be ⟨𝑏, Σ,Ψ⟩. Since ♮Σ is normalizing, both cells, 𝐷 and ♮𝐷,

are normalizing by the induction hypothesis. As the cell ⟨𝑏, Σ,Φ⟩ is also normalizing
by the induction hypothesis, the evaluation ⟨𝑏, Σ,Φ⟩ ◦ 𝐷, ℓ is defined.

Case Υ is λℎ:𝜋.Φ. Then the stack ℓ is of the form 𝐷, ℓ′, where both 𝐷 and ♮𝐷 are
normalizing. Thus, Σ ⊎ [ℎ ↦→ 𝐷] is normalizing and the induction hypothesis applies.

In every other case, we pick a rule for ◦ and apply the induction hypothesis. □

A cell 𝐶 is said to be neutral, if for any aligned neutral stack ℓ, the formula 𝐶 ◦ ℓ is
valid. Just as above, this recursive definition is well-founded, because every cell in ℓ is
of lower order than 𝐶.

Lemma 1. Any neutralized cell ♮𝐶 is neutral.

Proof. We proceed in the same way as in Theorem 1, via an intermediate lemma stating
that any cell of the form ⟨⊤, Σ,Υ⟩ is neutral, if its cell context Σ is neutral. □

A cell 𝐶1 entails 𝐶2, denoted 𝐶1 ⇛ 𝐶2, when they have the same type and for any
aligned stacks ℓ1 and ℓ2 such that ℓ1 ⇛ ℓ2, we have 𝐶1 ◦ ℓ1 ⇒ 𝐶2 ◦ ℓ2. Here and below,
the symbol ⇒ stands for logical consequence, and ⇔ for logical equivalence, under the
same standard model used for assertions. Cell 𝐶1 is equivalent to 𝐶2, denoted 𝐶1 ≡ 𝐶2,
when 𝐶1 ⇛ 𝐶2 and 𝐶2 ⇛ 𝐶1.

Lemma 2. Cell entailment is reflexive and transitive.
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Proof. We prove reflexivity as in Theorem 1 and Lemma 1, via an intermediate lemma
stating that for any same-typed 𝐶1 = ⟨𝑏, Σ1,Υ⟩ and 𝐶2 = ⟨𝑏, Σ2,Υ⟩ where Σ1 ⇛ Σ2,
we have 𝐶1 ⇛ 𝐶2. To establish transitivity, given 𝐶1 ⇛ 𝐶2 and 𝐶2 ⇛ 𝐶3, we consider
aligned stacks ℓ1 and ℓ2 such that ℓ1 ⇛ ℓ2. Then we have 𝐶1◦ ℓ1 ⇒ 𝐶2◦ ℓ2 by definition,
and 𝐶2 ◦ ℓ2 ⇒ 𝐶3 ◦ ℓ2, since ℓ2 ⇛ ℓ2. □

Lemma 3. Consider two cells of the same type, 𝐶1 and 𝐶2, such that for any aligned
stack ℓ, we have 𝐶1 ◦ ℓ ⇒ 𝐶2 ◦ ℓ. Then 𝐶1 ⇛ 𝐶2.

Proof. Let ℓ1 and ℓ2 be aligned stacks such that ℓ1 ⇛ ℓ2. Then 𝐶1 ◦ ℓ1 ⇒ 𝐶1 ◦ ℓ2 by
Lemma 2, and 𝐶1 ◦ ℓ2 ⇒ 𝐶2 ◦ ℓ2 by the lemma assumption. □

Note that𝐶1 ⇛ 𝐶2 does not imply ♮𝐶1 ⇛ ♮𝐶2. For example, the cell ⟨⊥,∅, λ𝑔:□.0⟩
entails ⟨⊥,∅, λ𝑔:□. 𝑔⟩, yet, when we apply their neutralizations to ⟨⊥,∅, 0⟩, we obtain
⊤ and ⊥, respectively. Thus, to establish ℓ1 ⇛ ℓ2, we must show pairwise entailment not
only for the cells in the two stacks, but also for their neutralizations. The same applies
to cell contexts.

Given three cells 𝐶1 = ⟨𝑏1, Σ1,Φ⟩, 𝐶2 = ⟨𝑏2, Σ2,Φ⟩, and 𝐶3 = ⟨𝑏3, Σ3,Φ⟩ that have
the same type and the same recipe Φ, we say that 𝐶1 is the fusion of 𝐶2 and 𝐶3 when
𝑏1 = 𝑏2 ∧ 𝑏3 and Σ1 is the fusion of Σ2 and Σ3. Quite obviously, if 𝐶1 is the fusion
of 𝐶2 and 𝐶3, then ♮𝐶1 is the fusion of ♮𝐶2 and ♮𝐶3 (all three are actually the same).
Furthermore, any cell 𝐶 is the fusion of itself and ♮𝐶.

A cell 𝐶1 is a meet of 𝐶2 and 𝐶3 if they all have the same type, the neutralized cells
♮𝐶2 and ♮𝐶3 are equivalent, and for any aligned stacks ℓ1, ℓ2, ℓ3 such that ℓ1 is a meet of
ℓ2 and ℓ3, we have 𝐶1 ◦ ℓ1 ⇔ 𝐶2 ◦ ℓ2 ∧ 𝐶3 ◦ ℓ3.

Lemma 4. If 𝐶1 is the fusion of 𝐶2 and 𝐶3, then 𝐶1 is a meet of 𝐶2 and 𝐶3.

Proof. We proceed as in Theorem 1, via an intermediate lemma stating that for all same-
typed 𝐶1 = ⟨𝑏1, Σ1,Υ⟩, 𝐶2 = ⟨𝑏2, Σ2,Υ⟩, and 𝐶3 = ⟨𝑏3, Σ3,Υ⟩ where 𝑏1 = 𝑏2 ∧ 𝑏3 and
Σ1 is a meet of Σ2 and Σ3, cell 𝐶1 is a meet of 𝐶2 and 𝐶3. The equivalence of ♮𝐶2 and
♮𝐶3 directly follows from the intermediate lemma in the proof of Lemma 2. □

Corollary 1. For any cell 𝐶 and aligned stack ℓ, we have 𝐶 ◦ ℓ ⇔ ♮𝐶 ◦ ℓ ∧ 𝐶 ◦ ♮ℓ.
Corollary 2. Any cell 𝐶 entails ♮𝐶.

Lemma 5. Consider cells 𝐶1, 𝐶2, 𝐶3 of the same type, such that ♮𝐶2 ≡ ♮𝐶3 and for any
aligned stack ℓ, we have 𝐶1 ◦ ℓ ⇔ 𝐶2 ◦ ℓ ∧ 𝐶3 ◦ ℓ. Then 𝐶1 is a meet of 𝐶2 and 𝐶3.

Proof. Consider aligned stacks ℓ1, ℓ2, ℓ3 such that ℓ1 is a meet of ℓ2 and ℓ3.

𝐶1 ◦ ℓ1 ⇔ 𝐶1 ◦ ℓ2 ∧ 𝐶1 ◦ ℓ3 (Lemma 4)
⇔ 𝐶2 ◦ ℓ2 ∧ 𝐶3 ◦ ℓ2 ∧ 𝐶2 ◦ ℓ3 ∧ 𝐶3 ◦ ℓ3 (assumption)
⇔ ♮𝐶2 ◦ ℓ2 ∧ 𝐶2 ◦ ♮ℓ2 ∧ ♮𝐶3 ◦ ℓ2 ∧ 𝐶3 ◦ ♮ℓ2 ∧ (Corollary 1)

♮𝐶2 ◦ ℓ3 ∧ 𝐶2 ◦ ♮ℓ3 ∧ ♮𝐶3 ◦ ℓ3 ∧ 𝐶3 ◦ ♮ℓ3

⇔ ♮𝐶2 ◦ ℓ2 ∧ 𝐶2 ◦ ♮ℓ2 ∧ ♮𝐶2 ◦ ℓ2 ∧ 𝐶3 ◦ ♮ℓ3 ∧ (♮𝐶2 ≡ ♮𝐶3,
♮𝐶3 ◦ ℓ3 ∧ 𝐶2 ◦ ♮ℓ2 ∧ ♮𝐶3 ◦ ℓ3 ∧ 𝐶3 ◦ ♮ℓ3 ♮ℓ2 ≡ ♮ℓ3)

⇔ ♮𝐶2 ◦ ℓ2 ∧ 𝐶2 ◦ ♮ℓ2 ∧ ♮𝐶3 ◦ ℓ3 ∧ 𝐶3 ◦ ♮ℓ3

⇔ 𝐶2 ◦ ℓ2 ∧ 𝐶3 ◦ ℓ3 (Corollary 1) □
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This leads to a surprising distributivity property. Consider a cell 𝐷 = ⟨𝑏, Σ,Φ ∧Ψ⟩
and its conjuncts 𝐷1 = ⟨𝑏, Σ,Φ⟩ and 𝐷2 = ⟨𝑏, Σ,Ψ⟩. If ♮𝐷1 is equivalent to ♮𝐷2, then,
by Lemma 5, 𝐷 is a meet of 𝐷1 and 𝐷2, and ♮𝐷 is a meet of ♮𝐷1 and ♮𝐷2. Then, for
any appropriate cell 𝐶 and stack ℓ, the formula 𝐶 ◦ 𝐷, ℓ is logically equivalent to the
conjunction of 𝐶 ◦ 𝐷1, ℓ and 𝐶 ◦ 𝐷2, ℓ. Informally speaking, we can split a recipe over
any cell conjunction, no matter where it occurs inside the recipe, as long as the conjuncts
have equivalent neutralizations.

Theorem 2. Consider a type signature 𝜋 and a cell 𝐽 = ⟨⊥, Σ, 0𝜋⟩. For every cell 𝐶 of
type 𝜋, we have 𝐽 ⇛ 𝐶 and ♮𝐽 ⇛ ♮𝐶.

The proof of Theorem 2 is given in Appendix B. This result justifies our use of joker
recipes to represent universal quantification over predicate variables. Indeed, for any
recipes Φ : □ and Ψ : 𝜚, and a type-compatible cell context Σ, the cell ⟨⊥, Σ,∀𝑔:𝜚.Φ⟩
entails ⟨⊥, Σ, (λ𝑔:𝜚.Φ)Ψ⟩, and the same holds for their neutralizations.

In the process of evaluation, we can factorize selected first-order monomorphic cells,
that is, those that only have term parameters whose type is not Type.

Lemma 6. Consider a cell𝐶 = ⟨𝑏, Σ, λ𝑔:(𝑥:𝜏) .Φ⟩ and an aligned stack 𝐷, ℓ, such that
none of the types 𝜏𝑖 is Type. Let 𝐷′ be the cell ⟨⊥,∅, λ𝑥:𝜏. 𝑧1 = 𝑥1 ∧ · · · ∧ 𝑧𝑛 = 𝑥𝑛 → 0⟩
for some fresh variables 𝑧. Then 𝐶 ◦ 𝐷, ℓ ⇔ 𝐶 ◦ ♮𝐷, ℓ ∧∀𝑧:𝜏. (♮𝐶 ◦ 𝐷′, ♮ℓ) ∨ (𝐷 ◦ 𝑧).

The proof of Lemma 6 is given in Appendix C. This lemma provides us with an
alternative evaluation rule for cell arguments which are eligible and useful to factorize.
The latter is a matter of heuristic choice: in our current implementation, we select non-
neutral cells that are used multiple times in the final VC and are derived from executable
code instead of just a sequence of assertions.

The new rule splits the formula 𝐶 ◦ 𝐷, ℓ into two parts. The first part, 𝐶 ◦ ♮𝐷, ℓ,
erases all subgoals stemming from 𝐷. In the second part, the formula ♮𝐶 ◦𝐷′, ♮ℓ erases
all subgoals that are not stemming from 𝐷, and replaces every occurrence of 𝐷 with a
“unification subgoal” 𝐷′, which captures a term substitution in the answer variables 𝑧.
These substitutions are transferred to the single instance of 𝐷 in the formula 𝐷 ◦ 𝑧.

By rewriting the second part as an implication ∀𝑧:𝜏.¬(♮𝐶 ◦ 𝐷′, ♮ℓ) → (𝐷 ◦ 𝑧), we
can see the antecedent as the cumulated logical premise (or the strongest postcondition)
of the context 𝐶 ◦ [ ], ℓ for the continuation in the hole. In the next section, we show
how this rule allows us to produce more compact verification conditions.

4 Verification Condition Generation

Verification conditions for Coma expressions are computed by the operator ∁𝔭

𝔡
, where

Boolean flags 𝔭 and 𝔡 establish the mode:

∁⊤
⊥ : caller verification condition, to verify individual calls of a defined handler.

∁⊥
⊤ : callee verification condition, to prove the correctness of a handler definition.

∁⊤
⊤ : full verification condition, which merges the proof goals of the first two modes.

∁⊥
⊥ : null verification condition, which is always true on fully applied expressions.
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∁⊤
𝔡
(ℎ) ≜ ℎ ∁𝔭

𝔡
(𝜋 → 𝑒) ≜ (λ𝜋.∁𝔭

𝔡
(𝑒)) ∧ ♮ (λ𝜋.∁¬𝔭

¬𝔡 (𝑒))

∁⊥
𝔡
(ℎ) ≜ ♮ℎ ∁𝔭

𝔡
(𝑘 𝑠 𝑜) ≜ ∁𝔭

𝔡
(𝑘) 𝑠 ∁𝔭

𝔡
(𝑜1) . . . ∁𝔭

𝔡
(𝑜𝑛)

∁𝔭

𝔡
(↑ 𝑒) ≜ ∁𝔡

𝔡
(𝑒) ∁𝔭

𝔡
({𝜑} 𝑒) ≜ (𝜑 → ∁𝔭

𝔡
(𝑒)) ∧ (𝔭 → ¬𝜑 → 0)

∁𝔭

𝔡
(↓ 𝑒) ≜ ∁𝔭

𝔭 (𝑒) ∁𝔭

𝔡
(𝑒 / ℎ 𝜋 = 𝑑) ≜ let ℎ 𝜋 = ∁⊤

⊥ (𝑑) in ∁𝔭

𝔡
(𝑒) ∧ ∀𝜋.∁⊥

𝔭 (𝑑)

Fig. 8: Verification condition generation.

The caller mode extracts the specification (or the contract) of a defined handler from its
definition. It treats every assertion as a precondition to verify at call sites, and it stops
at the black-box barrier which separates the “interface” part of the definition from the
hidden “implementation” part. The callee mode, on the contrary, treats every assertion
as a precondition to assume, and verifies the correctness of the implementation part,
after the black-box barrier, under those assumptions. In the full mode, which is the
starting verification mode for Coma expressions, we prove assertions both before and
after a barrier. In the null mode, which is equivalent to stopping verification, no proof
obligations are generated at all. A Coma program 𝑒 is said to be correct, when its fully
evaluated verification condition ⟨⊥, Σprim,∁⊤

⊤ (𝑒)⟩ ◦ 𝜀 is valid.
Figure 8 shows the rules of VC generation. The notation let ℎ 𝜋 = Ψ in Φ in the

rule for handler definitions stands for (λℎ:𝜋.Φ) (λ𝜋.∀ℎ:𝜋.Ψ)—notice the universal
quantifier that covers the occurrences of ℎ in Ψ and ensures that this symbol is bound in
the resulting recipe, just as it is bound in the original Coma expression. In this rule, we
assign the handler’s specification λ𝜋.∀ℎ:𝜋.∁⊤

⊥ (𝑑) to a predicate variable with the same
name ℎ. This recipe is verified every time ℎ is called from the underlying expression 𝑒

or recursively from the definition body 𝑑.
Informally, flag 𝔭 determines whether we should generate proof obligations—prove

assertions, verify handler definitions, ensure the safety of handler calls—at the current
position in the expression. For example, in the rule for {𝜑} 𝑒, we only generate a subgoal
for 𝜑 (expressed as a double negation ¬𝜑 → 0), when 𝔭 is true. Similarly, in the rule
for handler definitions, we verify the correctness of the implementation only when 𝔭 is
true; otherwise, the formula ∁⊥

⊥ (𝑑) always reduces to ⊤. Finally, on handler invocation,
when 𝔭 is false, the corresponding predicate variable is neutralized, which effectively
cancels all proof obligations in the handler’s specification, as 0 becomes evaluated as ⊤.

When we pass through a black-box barrier ↑, the second flag 𝔡 takes the place of 𝔭.
Thus, when we compute the specification of a handler by applying ∁⊤

⊥ to the handler’s
body, we stop at the black-box barrier, where we switch to ∁⊥

⊥, which evaluates to ⊤.
On the other hand, when we verify the correctness of a handler definition using ∁⊥

⊤, we
do not generate proof obligations for assertions and handler calls until we arrive at the
black-box barrier, where we pass into the full mode ∁⊤

⊤ for the rest of the definition.
The white-box barrier ↓ replaces the second flag with 𝔭. This preserves the current

value of 𝔭 for the rest of the expression, regardless of the subsequent barriers. White-box
barriers are not needed in the source code, as we can simply avoid placing barriers in the
underlying expression. However, they find their use in the E-AppC rule of the operational
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semantics of Coma, where an anonymous handler argument becomes a handler definition
under a white-box barrier. This ensures that during the VC computation, the definition
body is treated in the full mode, just like the anonymous handler was treated in the
preceding state, preserving the validity of the overall verification condition.

The rule for handler calls simply propagates the VC operator down to the individual
handlers without changing the mode. Similarly, the rule for anonymous handlers pushes
the VC operator in its current mode under the λ-prefix—however, we must, in addition,
verify the handler in the complementary mode, with both𝔭 and 𝔡 negated. This secondary
verification condition is only concerned with the continuation parameters of the handler,
and not with its proper proof obligations, which is why we neutralize the corresponding
recipe. To see why both conditions are necessary, consider the following Coma code:

crash / crash = ((f:□) → ↑f) fail

This program reduces to fail: we unfold crash (E-Sym), purge the now-unreachable
definition (E-Gc), substitute fail into f (E-AppH), and drop the barrier (E-Bbox). Thus,
we should not be able to prove it correct. Let us look at the full verification condition:

∁⊤
⊤ (crash / crash = (f → ↑f) fail)

= let crash =∁⊤
⊥ ((f → ↑f) fail) in ∁⊤

⊤ (crash) ∧ ∁⊥
⊤ ((f → ↑f) fail)

= let crash =∁⊤
⊥ (f → ↑f) ∁⊤

⊥ (fail) in crash ∧ ∁⊥
⊤ (f → ↑f) ∁⊥

⊤ (fail)
= let crash = ((λf.∁⊤

⊥ (↑f)) ∧ ♮ (λf.∁⊥
⊤ (↑f))) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.∁⊥

⊥ (f)) ∧ ♮ (λf.∁⊤
⊤ (f))) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.♮f) ∧ ♮ (λf.f)) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.♮f) ∧ ♮ (λf.f)) fail in crash ∧ ((λf.f) ∧ ♮ (λf.♮f)) (♮fail)
≈ (λf.♮f)0 ∧ (♮λf.f)0 ∧ (λf.f) (♮0) ∧ (♮λf.♮f) (♮0)

For the sake of readability, we perform several reductions directly on the recipe in the
last step; it is easy to show that the resulting recipe leads to the same final VC formula.
Out of the four conjuncts, only the second one evaluates to ⊥, and the other three to ⊤.
If the rule for anonymous handlers did not include the second condition ♮λ𝜋.∁¬𝔭

¬𝔡 (𝑑),
we would end up with only the first and the third conjunct, which both evaluate to ⊤.

Verification conditions produced by the ∁⊤
⊤ operator are for partial correctness: they

do not ensure the termination of Coma programs. Here is one possible way to verify
total correctness. Let us say that a handler definition 𝑓 𝑥:𝜏 𝑔:𝜚 = 𝑑 is equipped with a
variant, if there exists an int-typed term 𝑡 [𝑥] such that every occurrence of 𝑓 in 𝑑 is in
an expression of the form { 𝑡 [𝑠] < 𝑡 [𝑥] ∧ 0 ≤ 𝑡 [𝑥]} 𝑓 𝑠 𝑜. Here we assume that variables
are never bound twice, and so the variables 𝑥 in the assertion refer indeed to the formal
parameters of 𝑓 . The ordering relation in the assertion is well-founded, therefore, an
infinite tower of recursive calls of 𝑓 is impossible. A practical implementation would, of
course, accept other well-founded relations such as structural decrease on binary trees,
lexicographic orderings on tuples, etc. While the definition above does not allow us to
use 𝑓 as a handler argument inside 𝑑, this is not a limitation, as we can always move
such occurrences into a local wrapper handler definition.

Below we list the main results about our VC generation procedure. The proofs are
given in Appendix D.
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Lemma 7. For any Coma expression 𝑒, any cell of the form ⟨𝑏, Σ,∁⊥
⊥ (𝑒)⟩ is neutral.

Consequently, any VC of the form ∁⊥
⊥ (𝑒), where 𝑒 is a fully applied expression, can

be safely replaced with a tautological recipe such as ♮0.

Lemma 8. For any Coma expression 𝑒, any cell of the form ⟨𝑏, Σ,∁⊤
⊤ (𝑒)⟩ is a meet of

⟨𝑏, Σ,∁𝔭

𝔡
(𝑒)⟩ and ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑒)⟩ for all 𝔭 and 𝔡.

The fact that ∁⊤
⊤ (𝑒) can be split into ∁⊤

⊥ (𝑒) and ∁⊥
⊤ (𝑒) is the basis of the correctness

preservation theorem:

Theorem 3 (Preservation of Correctness). For any Coma programs 𝑒 and 𝑒′, if 𝑒 is
correct and 𝑒 −→ 𝑒′, then 𝑒′ is correct.

Theorem 4 (Progress). For any correct Coma program 𝑒, either 𝑒 is halt, or 𝑒 −→ 𝑒′

for some program 𝑒′.

In conclusion, let us show some examples of verification conditions. For clarity, we
omit type annotations, inline the specifications of primitive handlers, treat 0 as ⊥ in the
callee mode, and remove trivial subgoals coming from ∁⊥

⊥ (·) or ⊥ → Φ. The caller VC
of removeRoot on page 7, for a given tree t and continuation return, is the recipe

(∀lvr. t = Node l v r → ∀s.(∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r) → return s) ∧
(t = Empty → 0)

This recipe is the specification of removeRoot, instantiated and proved at each call site.
The subrecipe (∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r) → return s is the callee VC for the ret
handler. Notice that the assertion {∀e:int. e ∈ s ↔ e ∈ l∨ e ∈ r } does not generate
a subgoal here: as it occurs before the black-box barrier, it is treated as an assumption
in the callee mode.

Here is the callee VC for removeRoot, to be proved for all values of t:

∀lvr. t = Node l v r → mergeTree l r (λs.∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r)

There is no subgoal generated for the second outcome of unTree, as it does not contain
an abstraction barrier. The predicate argument of mergeTree is the caller VC of ret;
this time the assertion does generate a subgoal.

Here is the specification of the product handler in Fig. 4, for given integers a, b and
a continuation return:

(b ̸≥ 0 → 0) ∧ (∀c. c = a · b → return c)

The callee VC for product, to be proved for all values of a and b, is as follows:

b ≥ 0 →
a · b + 0 = a · b ∧ b ≥ 0 ∧
∀pqr. p · q + r = a · b ∧ q ≥ 0 →

(q > 0 →
(q mod 2 = 1 → (p + p) · (q div 2) + r + p = a · b ∧ q div 2 ≥ 0) ∧
(q mod 2 ≠ 1 → (p + p) · (q div 2) + r = a · b ∧ q div 2 ≥ 0)) ∧

(q ≯ 0 → r = a · b)
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product (a b: int) { b ≥ 0 } (return (c: int) { c = a · b })
= loop a b 0

/ loop (p q r: int) { p · q + r = a · b ∧ q ≥ 0 }
= if (q > 0) (→ if (q mod 2 = 1) (→ next (r + p)) (→ next r)

/ next (s: int) = loop (p + p) (q div 2) s)
(→ return r)

Fig. 9: Extended handler prototypes.

Notice how this formula coincides with the verification condition for the definition of
product obtained by the traditional weakest-precondition calculus. Consider now the
same VC, when we select the next handler for factorization, as described in Section 3:

b ≥ 0 →
a · b + 0 = a · b ∧ b ≥ 0 ∧
∀pqr. p · q + r = a · b ∧ q ≥ 0 →

(q > 0 →
∀s. ((q mod 2 = 1 ∧ s = r + p) ∨ (q mod 2 ≠ 1 ∧ s = r)) →

(p + p) · (q div 2) + s = a · b ∧ q div 2 ≥ 0) ∧
(q ≯ 0 → r = a · b)

The formula λs.(q mod 2 = 1∧s = r+p) ∨ (q mod 2 ≠ 1∧s = r) is the strongest post-
condition of the expression if (q mod 2 = 1) (→ next (r + p)) (→ next r) with respect
to the continuation next. The method of compact verification conditions proposed by
Flanagan and Saxe [7] aggregates in a similar way the strongest postconditions across
alternative execution paths. The connection between the compact verification conditions
and the classical weakest-precondition calculus was studied by Leino [12]. Our approach
makes this connection even more prominent, as it allows us to derive both forms from
the common precursor verification condition.

5 Implementation

We have implemented the Coma language and its VC generator on top of the Why3
platform [6]. The terms and formulas of Coma are written in the logical language of
Why3. This way, we can make use of logical theories from the Why3 standard library,
and we readily benefit from Why3’s interface with many automated theorem provers. In
addition to what is presented in the previous sections, our implementation offers a few
extensions, described below.

Extended handler prototypes. To facilitate writing and understanding of Coma pro-
grams, we define a suitable syntax for writing pre- and postconditions directly in the
handler prototype, as shown in Fig. 9. This notation is desugared into assertions, black-
box barriers, and wrapper handlers of the core Coma language; in particular, the code
in Fig. 9 is translated into what is shown in Fig. 4. The precondition { b ≥ 0 } in the
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prototype of product becomes an assertion put on top of the definition body, now
hidden under a black-box barrier. The same transformation is applied to the precondi-
tion of the inner loop handler. The postcondition { c = a · b } attached to the return,
forces creation of a wrapper handler above the main black-box barrier and becomes the
precondition in the body of this wrapper handler.

Notice that in this syntax we do not put a colon between a handler parameter and its
type signature: the parameters of an outcome are listed directly after the handler’s name.

Let-binding for variables. We added a proper syntax for binding a variable to a term,
to avoid writing anonymous handler applications ((𝑥:𝜏) → 𝑒) 𝑠. The new construction
is written 𝑒 / 𝑥:𝜏 = 𝑠. We show its use in the example in Fig. 11 in the next section.

Mutable state. Our implementation supports mutable variables (references) that can
be allocated, modified, and passed as arguments to handlers. References are alias-free,
which means that is forbidden to pass a statically accessible reference as an argument or
to pass the same reference argument twice. Each handler is annotated with a pre-write
clause, which lists the references in its lexical scope that might be modified before the
handler is executed. For example, here is the prototype of a handler that increments an
integer reference received as argument and returns its previous value:

incr (&r: int) (return [r] (p: int))

The pre-write annotation [r] for the return outcome signifies that the code that calls
return—namely, the incr handler—may change the value of r before the call. Pre-
write annotations are automatically inferred for defined handlers and their continuation
parameters. However, we do not infer them for the higher-order outcomes (i.e., contin-
uation parameters of continuation parameter).

The code with references is translated into pure Coma via a fine-grained monadic
transformation, during which the references in the pre-write annotations become addi-
tional term parameters. In the example above, after translation, incr would return to the
caller the updated value of r along with its previous value in p.

To capture the pre-state of references, we admit let-bindings in handler prototypes.
The full prototype of incr, together with its specification, is as follows:

incr (&r: int) [o: int = r] (return [r] (p: int) { r = o + 1 ∧ p = o })

Specification extraction. Given a first-order handler, Coma can produce, on request,
the logical predicates that represent its pre- and postconditions. These predicates are
computed in a similar way to subgoal factorization discussed in the previous section.

6 Case Study: Regular Expression Processing

In this section, we demonstrate the use of Coma by verifying a small but non-trivial
OCaml program, that uses higher-order functions, exceptions, and requires giving spec-
ification to closures in order to be verified. Figure 10 shows the code for a function
accept that checks if a string s is recognized by a regular expression r. The type
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type regexp = Empty | Alt of regexp * regexp
| Epsilon | Concat of regexp * regexp
| Char of char | Star of regexp

let accept (r: regexp) (s: string): bool =
let n = String.length s in
let rec a (r: regexp) (i: int) (k: int → unit): unit = match r with

| Empty → ()
| Epsilon → k i
| Char c → if i < n && s.[i] = c then k (i + 1)
| Alt (r1, r2) → a r1 i k; a r2 i k
| Concat (r1, r2) → a r1 i (fun j → a r2 j k)
| Star r1 → k i; a r1 i (fun j → if i < j then a r j k) in

try a r 0 (fun j → if j = n then raise Exit); false with Exit → true

Fig. 10: Regular expression engine in OCaml.

regexp of regular expressions is given on top on Fig. 10. The code traverses the string
with a recursive function a, which takes three parameters: a current regexp r, an integer
index i, and a continuation k. This function tries to match a substring s[i..j) with r,
and then applies the continuation k to index j to proceed with the matching of s[j..).
If no such j exists, function a returns the unit value (). The initial continuation passed
to function a signals a success by raising the predefined exception Exit.

Figure 11 contains a Coma translation for the accept function, which can be obtained
by a mechanical CPS-translation of the OCaml code. The accept handler has a return
outcome that receives the Boolean results of the computation. Second, the internal
handler a has a continuation o, that corresponds to the normal outcome of the original
OCaml function. Finally, the continuation k is transformed itself into CPS-style, and
thus has its own outcome, named h. Another way to look at this code is to interpret k
and o as success and error/backtrack continuations, respectively, as in a double-barreled
CPS [17]. The pattern-matching on the regular expression r is performed using a handler
unRe similar to the unTree handler.

To verify this Coma program, we need to extend it with barriers and specifications.
Figure 12 contains a version of accept with added preconditions (in cyan) and ghost
parameters (in gray). As explained in Section 5, specification annotations inside handler
prototypes are automatically desugared into assertions, black-box barriers, and wrapper
handlers. The postcondition of accept (i.e., the precondition of return) uses a built-in
logical predicate mem, where mem s r holds if and only if the string s belongs to the
language of r.

We add a ghost parameter ck to handler a for the purpose of its specification. Note
that the current implementation of Coma does not provide any special treatment for
ghost code and data. In future, we plan to introduce the necessary checks that ensure that
ghost computations do not interfere with the observable part of the program. As in the
OCaml code, handler a tries to match a substring s[i..j) with r, and then applies the
continuation k to index j to proceed with the matching of s[j..). The ck parameter is
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accept (r: regexp) (s: string) (return (b: bool))
= a r 0 (j h → if (j = n) (→ return true) h) (→ return false)

/ a (r: regexp) (i: int) (k (j: int) (h)) (o)
= unRe r empty eps char alt cat star

/ empty = o
/ eps = k i o
/ char c = if (i < n && s[i] = c) (k (i + 1) o) o
/ alt r1 r2 = a r1 i k (→ a r2 i k o)
/ cat r1 r2 = a r1 i (j h → a r2 j k h) o
/ star r1 = k i (→ a r1 i (j h → if (i < j) (→ a r j k h) h) o)

/ n: int = length s

Fig. 11: Regular expression engine in Coma.

a first-class predicate which characterizes the index j passed to k. The cons predicate,
declared on top of the figure, is a shortcut to simplify annotations.

In addition to the annotations given in Fig. 12, we have also instrumented the Coma
code to verify the termination of handler a, as described in Section 4. In this case, the
variant is a pair ( |s| − i, r), ordered lexicographically: namely, we either progress in
string s or we move to a smaller regular expression. When the VC for handler accept
is sent to Why3, it is split into 44 individual proof tasks which are easily discharged by
the SMT solvers Z3 [4] and Alt-Ergo [3].

7 Case Study: Verified Assembly Code

We believe that Coma is a suitable intermediate language for the verification of unstruc-
tured programs. As a proof of concept, we have built a prototype tool for the deductive
verification of x86-64 assembly programs. The input of the tool is assembly code an-
notated with assumptions, assertions, and loop invariants. Figure 13 shows the x86-64
assembly code for a function sortbits that sorts the bits of a 64-bit integer using the
“I can’t believe it can sort” algorithm by Fung [8]. We use the AT&T syntax, with the
destination operand on the right. For instance, mov 𝐴, 𝐵 copies the register 𝐴 into 𝐵, and
andn 𝐴, 𝐵, 𝐶 computes 𝐴∧¬𝐵 and stores it in 𝐶. Integer literals start with a $ sign. The
code contains unnecessary labels (e.g., test2), which are only introduced to simplify
the forthcoming explanations.

Function sortbits receives an integer in the rdi register and returns an integer in
the rax register, with the same number of 1 bits, which are moved to the least significant
positions. The code iterates over all pairs of bits 0 ≤ 𝑖, 𝑗 < 64, using registers rdi and
rsi, with two nested loops. Whenever the bit 𝑖 is clear and the bit 𝑗 is set, the two
bits are swapped. (It is not obvious why this sorting procedure is correct; see Fung’s
paper for an explanation.) The code contains logical annotations as special comments:
namely, two loop invariants and one assertion before the function end. Here, we only
show that the population count remains constant (using a logical function pop), but we
do not show that bits are indeed sorted. We use the notation rdi@sortbits to refer to
the value of the rdi register at function entry.
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predicate cons (s: string) (r: regexp) (ck: int → bool) (i: int) =
exists j. i ≤ j ≤ length s ∧ mem s[i..j] r ∧ ck j

accept (r: regexp) (s: string) (return (b: bool) { b ↔ mem s r })
= a r 0 (j ↦→ j = n) (j h → if (j = n) (→ return true) h) (→ return false)
/ a (r: regexp) (i: int) (ck: int → bool) { 0 ≤ i ≤ n }

(k (j: int) { mem s[i..j] r ∧ i ≤ j ≤ n } (h { not (ck j)}))
(o { not (cons s r ck i) })

= unRe r empty eps char alt cat star
/ empty = o
/ eps = k i o
/ char c = if (i < n && s[i] = c) (k (i + 1) o) o
/ alt r1 r2 = a r1 i ck k (→ a r2 i ck k o)
/ cat r1 r2 = a r1 i (j ↦→ cons s r2 ck j) (j h → a r2 j ck k h) o
/ star r1 = k i (→ a r1 i (j ↦→ i < j ∧ cons s r ck j)

(j h → if (i < j) (→ a r j ck k h) h) o)
/ n: int = length s

Fig. 12: Regular expression engine in Coma, with specification.

# sort the bits of %rdi using ``I can't believe it can sort''
sortbits:

mov %rdi, %rax
mov $0x8000000000000000, %rdi

loop1: #@ invariant pop(rdi) = 1 ∧ pop(rax) = pop(rdi@sortbits)
mov $0x8000000000000000, %rsi

loop2: #@ invariant pop(rsi) = 1 ∧ pop(rax) = pop(rdi@sortbits)
mov %rax, %rcx # if !(rax & rdi)
and %rdi, %rcx
jnz cont2

test2: mov %rax, %rcx # and (rax & rsi)
and %rsi, %rcx
jz cont2

swap: or %rdi, %rax # then swap bits
andn %rax, %rsi, %rax

cont2: shr $1, %rsi
jnz loop2

cont1: shr $1, %rdi
jnz loop1
#@ assert pop(rax) = pop(rdi@sortbits)
ret

Fig. 13: Example of verified x86-64 code.
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sortbits

loop1

loop2 test2

swapcont2

cont1

(a) Control flow of sortbits.

sortbits &rax &rcx &rsi &rdi &flags [rdi0=rdi]
= [...]
loop1
/ loop1 =

{ pop(rdi) = 1 ∧ pop(rax) = pop(rdi0) }
↑ [...] loop2

/ loop2 =
{ pop(rsi) = 1 ∧ pop(rax) = pop(rdi0) }
↑ [...] if b0 cont2 test2

/ test2 = [...] if b1 cont2 swap
/ swap = [...] cont2

/ cont2 = [...] if b2 loop2 cont1
/ cont1 = [...] if b3 loop1 exit

/ exit = { pop(rax) = pop(rdi0) }
halt

(b) Structure of the Coma code for sortbits.

Fig. 14: Compilation passes for sortbits.

Our tool parses the code and its annotations, and starts with building its control-flow
graph (depicted in Fig. 14a). Then, it computes the dominator tree, the entry point being
the function entry. A basic block 𝐴 dominates a block 𝐵 whenever any path from the
entry to 𝐵 traverses 𝐴. For instance, block loop2 dominates block test2, which itself
dominates swap2. Finally, our tool builds a Coma code that follows the structure of the
dominator tree. In this way, we do not need to repeat the outer invariant in the inner loop
for variables that are not modified. For instance, the handler swap2 is a local definition
in handler test2, which is itself a local definition in handler loop2. Each invariant is
translated into an assertion followed by a barrier. Figure 14b shows the structure of the
Coma code for sortbits. For an easier reading, we omit type annotations and we have
left only what relates to control-flow and specification. Conditional jumps are translated
using the primitive if (and suitable Boolean conditions b𝑖), and unconditional jumps
are handler calls. Parts where references are modified are written “[...]” for clarity.
The translated code relies on our Why3 model of a fragment of the x86-64 instruction
set. For instance, the instruction andn is translated into a Coma reference assignment
&rax ← andn rax rsi, where the logical function andn is defined in the accompanying
Why3 library.

The Coma backend computes the VC for the code in Fig. 14b, and sends it to Why3.
There it is split into 5 proof tasks— two instances of invariant initialization, two instances
of invariant preservation, and the final postcondition—which are automatically proved
by Z3 and Alt-Ergo.

8 Related work

To our knowledge, no deductive verification system features explicit abstraction barriers
in the style of Coma. Compared to the widely used intermediate verification languages
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like WhyML [6], Viper [14], and Boogie [13], Coma is a smaller language, with fewer
constructs and a simpler VC generator, yet offering the same control structures.

There is a natural connection between the weakest-precondition calculus and the CPS
transformation, the former being a predicate transformer and the latter a structurally simi-
lar code transformer. This connection was first studied on a minimal imperative language
by Jensen [9]. This work was later extended with exception handling and goto statement
by Audebaud and Zucca [1], and furthermore, with recursion, higher-order functions, and
side effects by Kura [11]. A predicate transformer called the Dijkstra monad, introduced
by Swamy et al. [16] and used to verify higher-order and effectful F★ programs, also
highlights this connection. Coma exploits in a similar manner the relation between the
continuation-based style and the WP computation. Explicit abstraction barriers allow us
to verify recursive code without computing a fixed point of its verification condition.

The CFML tool developed by Charguéraud [2] enables the interactive verification of
higher-order stateful programs, written in a subset of OCaml. Programs are translated
into so-called characteristic formulas, which essentially capture the weakest precondition
of the programs, with respect to a shallow embedding of separation logic in Coq.
Specifications are proved in the form of lemmas derived from characteristic formulae.
Unlike Coma, or other VC-based program verifiers, the program logic rules of CFML
have to be applied manually in the course of an interactive Coq proof. Assertions
and invariants are provided as the proof progresses, which limits the possibilities for
automation. On the other hand, CFML offers a greater flexibility in stating properties of
program code, such as verifying a given function against two different contracts.

9 Conclusion

We presented Coma, an intermediate verification language with explicit abstraction
barriers that can be placed inside function definitions in order to make the exposed part
of the computation appear in the specification. This allows us to write specifications in
a more concise and flexible way, without having to manually translate executable code
into logical specification.

Our future work is planned along three main axes. We plan to add more powerful
mechanisms to handle the mutable state, by including the notions of ownership and
borrowing, and using prophecy variables in verification conditions. It is also interesting
to provide support for advanced control structures, such as iterators, coroutines, and
algebraic effects. Finally, we continue to improve the efficiency of our implementation,
in particular the recipe evaluation engine and the subgoal factorization heuristics.
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A Terms and formulas

The grammar of types, terms and logical formulas, as used in this paper, is presented
below. Of course, any practical implementation of Coma will choose its own set of types
and operations, and may also allow the programmer to extend it when desired.

variable: 𝑥, 𝑦,α, β

term: 𝑠, 𝑡, 𝜏, 𝜃 F Type | bool | int
| 𝑥 | tree 𝜏 | seq 𝜏

| ⊤ | ⊥ | 0 | 1 | 2 | . . .

| 𝑠 + 𝑡 | 𝑠 - 𝑡 | 𝑠 * 𝑡

| 𝑠 = 𝑡 | 𝑠 < 𝑡 | 𝑠 > 𝑡

| Node 𝑠1 𝑠2 𝑠3 | Empty
| [ 𝑠 ] | 𝑠1 [ 𝑠2 .. 𝑠3 ]
| concat 𝑠 𝑡 | length 𝑠

formula: 𝜑, 𝜓 F 𝑠 | ¬ 𝜑 | 𝜑 ∧ 𝜓

| 𝜑 → 𝜓 | 𝜑 ∨ 𝜓

| ∀ 𝑥 : 𝜏 . 𝜑 | ∃ 𝑥 : 𝜏 . 𝜑

As explained in Section 2, type expressions are treated as terms, so that a type
annotation 𝑠:𝜏 matches both “42:int” and “int:Type”. We do not include an access
operator for sequences; instead, we use the ternary slice operator 𝑠[𝑖.. 𝑗], which is
defined for all sequences 𝑠 and integers 𝑖, 𝑗 , producing the sequence (possibly empty) of
all elements 𝑠𝑘 such that 𝑖 ≤ 𝑘 < 𝑗 . Finally, we use Boolean terms as atomic formulas;
however, a non-atomic formula cannot be used as a Boolean term.

Figure 15 shows the typing rules for terms. Since we do not distinguish type and term
variables, the rule for 𝑥 : 𝜏 also applies to α : Type. Notice, however, that the symbol
Type itself does not have any type assigned to it.

Figure 16 shows the typing rules for logical formulas. The quantifiers in user-written
formulas are restricted to data variables, whose type is not Type. This restriction is
relaxed in fully evaluated verification conditions, as produced by the ◦ operator from
Section 3: in those, type variables can be universally quantified. Such quantifiers may
only appear in positive positions, and never under an existential quantifier, avoiding the
need in dependent types.

B Undefined Behaviour (Proof of Theorem 2)

A stack ℓ covers a cell 𝐶 = ⟨𝑏, Σ,Φ⟩ if one of the two condition holds: either 𝐶 appears
in ℓ, or 𝑏 = ⊤ and ℓ covers Σ. As with any property of cells extended to cell contexts, the
last condition means that ℓ covers every cell in Σ as well as its neutralization; the latter
requirement is trivially satisfied, since any neutralized cell admits an arbitrary cover.

We say that a cell 𝐶 = ⟨𝑏, Σ,Φ⟩ submits to a type signature 𝜋 if for every aligned
stack ℓ that submits to 𝜋, for every cell 𝐶0 = ⟨𝑏0, Σ0, 0𝜋⟩ and aligned stack ℓ0, such that
𝑏0 implies 𝑏 and ℓ0 covers both Σ and ℓ, we have 𝐶0 ◦ ℓ0 ⇒ 𝐶 ◦ ℓ.
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Γ ⊢ bool : Type Γ ⊢ int : Type
Γ ⊢ 𝜏 : Type

Γ ⊢ tree 𝜏 : Type
Γ ⊢ 𝜏 : Type

Γ ⊢ seq 𝜏 : Type

𝑥:𝜏 ∈ Γ

Γ ⊢ 𝑥 : 𝜏 Γ ⊢ ⊤ : bool Γ ⊢ ⊥ : bool
𝑠 ∈ {0, 1, 2, . . .}

Γ ⊢ 𝑠 : int

Γ ⊢ 𝑠 : int Γ ⊢ 𝑡 : int
Γ ⊢ 𝑠 + 𝑡 : int

Γ ⊢ 𝑠 : int Γ ⊢ 𝑡 : int
Γ ⊢ 𝑠 - 𝑡 : int

Γ ⊢ 𝑠 : int Γ ⊢ 𝑡 : int
Γ ⊢ 𝑠 * 𝑡 : int

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠 : 𝜏 Γ ⊢ 𝑡 : 𝜏
Γ ⊢ 𝑠 = 𝑡 : bool

Γ ⊢ 𝑠 : int Γ ⊢ 𝑡 : int
Γ ⊢ 𝑠 < 𝑡 : bool

Γ ⊢ 𝑠 : int Γ ⊢ 𝑡 : int
Γ ⊢ 𝑠 > 𝑡 : bool

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠1 : tree 𝜏 Γ ⊢ 𝑠2 : 𝜏 Γ ⊢ 𝑠3 : tree 𝜏

Γ ⊢ Node 𝑠1 𝑠2 𝑠3 : tree 𝜏

Γ ⊢ 𝜏 : Type
Γ ⊢ Empty : tree 𝜏

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠1 : 𝜏 . . . Γ ⊢ 𝑠𝑛 : 𝜏
Γ ⊢ [ 𝑠1 . . . 𝑠𝑛 ] : seq 𝜏

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠1 : seq 𝜏 Γ ⊢ 𝑠2 : int Γ ⊢ 𝑠3 : int
Γ ⊢ 𝑠1 [ 𝑠2 .. 𝑠3 ] : seq 𝜏

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠1 : seq 𝜏 Γ ⊢ 𝑠2 : seq 𝜏

Γ ⊢ concat 𝑠1 𝑠2 : seq 𝜏

Γ ⊢ 𝜏 : Type Γ ⊢ 𝑠 : seq 𝜏

Γ ⊢ length 𝑠 : seq 𝜏

Fig. 15: Typing rules for terms.

Γ ⊢ 𝑠 : bool
Γ ⊢ 𝑠 : Prop

Γ ⊢ 𝜑 : Prop
Γ ⊢ ¬𝜑 : Prop

Γ ⊢ 𝜑 : Prop Γ ⊢ 𝜓 : Prop
Γ ⊢ 𝜑 ∧ 𝜓 : Prop

Γ ⊢ 𝜑 : Prop Γ ⊢ 𝜓 : Prop
Γ ⊢ 𝜑 → 𝜓 : Prop

Γ ⊢ 𝜑 : Prop Γ ⊢ 𝜓 : Prop
Γ ⊢ 𝜑 ∨ 𝜓 : Prop

Γ ⊢ 𝜏 : Type Γ, 𝑥:𝜏 ⊢ 𝜓 : Prop
Γ ⊢ ∀𝑥:𝜏. 𝜑 : Prop

Γ ⊢ 𝜏 : Type Γ, 𝑥:𝜏 ⊢ 𝜓 : Prop
Γ ⊢ ∃𝑥:𝜏. 𝜑 : Prop

Fig. 16: Typing rules for formulas.
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Lemma 9. All cells submit to all type signatures.

Proof. By induction over the order of the type signature. Let us pick a type signature
𝜋 and assume, by the induction hypothesis, that all cells submit to every type signature
of a lower order than 𝜋. Now it suffices to prove that for any cell 𝐶 = ⟨𝑏, Σ,Υ⟩, if Σ
submits to 𝜋, then so does 𝐶. Once this is established, a simple induction over cell depth
will allow us to conclude. We proceed by induction over the size of Υ, counting only
the subrecipes, so that term substitutions do not affect the size.

Consider a stack ℓ aligned with𝐶 that submits to 𝜋. Consider a cell𝐶0 = ⟨𝑏0, Σ0, 0𝜋⟩
such that 𝑏0 implies 𝑏, and an aligned stack ℓ0 that covers Σ and ℓ. We need to show
𝐶0 ◦ ℓ0 ⇒ 𝐶 ◦ ℓ. If 𝑏0 is ⊥, then 𝐶0 ◦ ℓ0 evaluates to ⊥, which trivially entails 𝐶 ◦ ℓ.
Otherwise, both 𝑏0 and 𝑏 are ⊤, and we have the following cases to consider.

Case Υ is 0. Since 𝑏 is ⊤, the formula 𝐶 ◦ ℓ is also ⊤.
Case Υ is ℎ. Let Σ(ℎ) be a cell 𝐶ℎ = ⟨𝑏ℎ,Σℎ,Φℎ⟩. As ℓ0 covers 𝐶ℎ, either 𝐶ℎ is in ℓ0

or 𝑏ℎ = ⊤ and ℓ0 covers Σℎ. If the latter, we have 𝐶0 ◦ ℓ0 ⇒ 𝐶ℎ ◦ ℓ, as 𝐶ℎ submits to 𝜋.
Otherwise, 𝐶ℎ appears in ℓ0. By Corollary 1, we have 𝐶ℎ ◦ ℓ ⇔ ♮𝐶ℎ ◦ ℓ ∧ 𝐶ℎ ◦ ♮ℓ. The
cell ♮𝐶ℎ submits to 𝜋 and ℓ0 covers the neutralized context ♮Σℎ. Then 𝐶0◦ ℓ0 ⇒ ♮𝐶ℎ◦ ℓ.
To prove 𝐶0 ◦ ℓ0 ⇒ 𝐶ℎ ◦ ♮ℓ, we note that 𝐶0 ◦ ℓ0 evaluates to a conjunction, where one
part is of the form ⟨⊤, Σ′

0,∀𝑥:𝜏.∀𝑔:𝜚. 𝑓 𝑥 �̄�⟩ ◦ 𝜀 such that Σ′
0 ( 𝑓 ) is 𝐶ℎ. By evaluating

this formula further, we obtain ∀𝑥:𝜏.𝐶ℎ ◦ 𝑥, ⟨⊤, Σ′′
0 , 𝑔1⟩, . . . , ⟨⊤, Σ′′

0 , 𝑔𝑛⟩, where Σ′′
0 is

Σ′
0 ⊎ [𝑔1 ↦→ ⟨⊤, Σ′

0, 0𝜚1⟩, . . . , 𝑔𝑛 ↦→ ⟨⊤, Σ′
0, 0𝜚𝑛⟩]. Consider any cell ⟨⊤, Σ′′

0 , 𝑔𝑖⟩ along
with the 𝑖-th cell in ♮ℓ, which we shall denote ♮𝐷𝑖 . The two cells have the same type 𝜚𝑖 .
Since the order of 𝜚𝑖 is two less than the order of 𝜋, all cells submit to 𝜚𝑖 . Therefore, for
any aligned stack ℓ′′, we obtain ⟨⊤, Σ′′

0 , 𝑔𝑖⟩ ◦ ℓ
′′ = ⟨⊤, Σ′

0, 0𝜚𝑖 ⟩ ◦ ℓ′′ ⇒ ♮𝐷𝑖 ◦ ℓ′′, since
ℓ′′ covers itself as well as the neutralized cell context of ♮𝐷𝑖 . Then ⟨⊤, Σ′′

0 , 𝑔𝑖⟩ ⇛ ♮𝐷𝑖

by Lemma 3. By the same reasoning, we also have ♮⟨⊤, Σ′′
0 , 𝑔𝑖⟩ ⇛ ♮♮𝐷𝑖 . Consequently,

∀𝑥:𝜏.𝐶ℎ ◦ 𝑥, ⟨⊤, Σ′′
0 , 𝑔1⟩, . . . , ⟨⊤, Σ′′

0 , 𝑔𝑛⟩ ⇒ ∀𝑥:𝜏.𝐶ℎ ◦ 𝑥, ♮𝐷1, . . . , ♮𝐷𝑛 ⇒ 𝐶ℎ ◦ ♮ℓ.
Thus, 𝐶0 ◦ ℓ0 implies 𝐶ℎ ◦ ℓ.

Case Υ is ♮Φ. As neutralized cells admit any cover, ℓ0 covers ♮Σ. By the induction
hypothesis, ⟨⊤, ♮Σ,Φ⟩ submits to 𝜋, and 𝐶0 ◦ ℓ0 ⇒ ⟨⊤, ♮Σ,Φ⟩ ◦ ℓ.

CaseΥ isΦΨ. Let𝐶1 be ⟨⊤, Σ,Φ⟩ and𝐶2 be ⟨⊤, Σ,Ψ⟩. By the induction hypothesis,
𝐶1, 𝐶2, ♮𝐶2 submit to 𝜋. Also, ℓ0 covers 𝐶2 and ♮𝐶2, and so 𝐶0 ◦ ℓ0 ⇒ 𝐶1 ◦ 𝐶2, ℓ.

Case Υ is λ𝑔:𝜚.Φ. The stack ℓ is of the form 𝐶′, ℓ′, where the cells 𝐶′ and ♮𝐶′

submit to 𝜋 and are covered by ℓ0. Then Σ ⊎ [𝑔 ↦→ 𝐶′] also submits to 𝜋 and is covered
by ℓ0. By the induction hypothesis, 𝐶0 ◦ ℓ0 ⇒ ⟨⊤, Σ ⊎ [𝑔 ↦→ 𝐶′],Φ⟩ ◦ ℓ′.

Case Υ is Φ ∧ Ψ. Let 𝐶1 be ⟨⊤, Σ,Φ⟩ and 𝐶2 be ⟨⊤, Σ,Ψ⟩. By the induction
hypothesis, 𝐶0 ◦ ℓ0 entails both 𝐶1 ◦ ℓ and 𝐶2 ◦ ℓ.

Case Υ is ∀𝑥:𝜏.Φ. By the induction hypothesis, 𝐶0 ◦ ℓ0 implies ⟨⊤, Σ,Φ⟩ ◦ 𝜀. We
can safely assume that the variable 𝑥 does not occur in 𝐶0 ◦ ℓ0, and thus, 𝐶0 ◦ ℓ0 entails
∀𝑥:𝜏.⟨⊤, Σ,Φ⟩ ◦ 𝜀.

The rest of the cases are handled in a similar way. □

Corollary 3 (Theorem 2). Consider a type signature 𝜋 and a cell 𝐽 = ⟨⊥, Σ, 0𝜋⟩. For
every cell 𝐶 of type 𝜋, we have 𝐽 ⇛ 𝐶 and ♮𝐽 ⇛ ♮𝐶.

Proof. By Lemma 3. For any aligned stack ℓ, we have 𝐽 ◦ ℓ = ⊥ ⇒ 𝐶◦ ℓ. For the second
part, we note that ℓ covers itself and the cell context of ♮𝐶, hence ♮𝐽 ◦ ℓ ⇒ ♮𝐶 ◦ ℓ. □
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C Cell factorization (Proof of Lemma 6)

Consider a cell 𝐷 of type 𝑥:𝜏, where none of the term types 𝜏𝑖 is equal to Type. We
say that a cell 𝐶 = ⟨𝑏,Σ,Φ⟩ wraps around 𝐷 when either 𝐶 is equal to 𝐷 or 𝑏 = ⊤
and Σ wraps around 𝐷. This is a special case of a broader notion from the previous
section: 𝐶 wraps around 𝐷 exactly when the singleton stack 𝐷 covers 𝐶. We say that
𝐶 releases 𝐷, when 𝐶 wraps around 𝐷 and for any stack ℓ that is aligned with 𝐶 and
releases 𝐷, we have 𝐶 ◦ ℓ ⇔ ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧), where 𝐶′ and ℓ′ are obtained by
replacing every occurrence of 𝐷 in Σ and ℓ, respectively (including recursively inside
nested cell contexts), with the cell 𝐷′ = ⟨⊥,∅, λ𝑥:𝜏. 𝑧1 = 𝑥1 ∧ · · · ∧ 𝑧𝑛 = 𝑥𝑛 → 0⟩.

Lemma 10. Any cell 𝐷 of type 𝑥:𝜏, where none of the types 𝜏𝑖 is Type, releases itself.

Proof. Since 𝐷 cannot appear in its own cell context, and any aligned stack is a sequence
of terms, we obtain ∀𝑧:𝜏. (𝐷 ◦ 𝑠) ∨ (𝐷 ◦ 𝑧) ⇔ (𝐷 ◦ 𝑠) ∨ (∀𝑧:𝜏.𝐷 ◦ 𝑧) ⇔ 𝐷 ◦ 𝑠. □

Lemma 11. Consider a cell 𝐷 of type 𝑥:𝜏, where none of the term types 𝜏𝑖 is Type.
Any cell 𝐶 that wraps around 𝐷, releases 𝐷.

Proof. It is sufficient to prove that every cell 𝐶 = ⟨⊤, Σ,Υ⟩, where Σ releases 𝐷,
also releases 𝐷. Once this is established, a simple induction over cell depth together
with Lemma 10 allow us to conclude. We proceed by induction over the size of Υ,
counting only the subrecipes, so that term substitutions do not affect the size. Since
first component of 𝐶 is ⊤ and Σ wraps around 𝐷, the cell 𝐶 also wraps around 𝐷.
Consider a stack ℓ that is aligned with 𝐶 and releases 𝐷. Let Σ′ and ℓ′ denote the
result of replacing all occurrences of 𝐷 throughout Σ and ℓ, respectively, with the cell
𝐷′ = ⟨⊥,∅, λ𝑥:𝜏. 𝑧1 = 𝑥1 ∧ · · · ∧ 𝑧𝑛 = 𝑥𝑛 → 0⟩. Let 𝐶′ be the cell ⟨⊤,Σ′,Υ⟩. We need
to prove that 𝐶 ◦ ℓ ⇔ ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧).

Case Υ is ℎ and Σ(ℎ) = 𝐷. Then ℓ is a sequence of terms 𝑠, and ℓ′ = ℓ. We have

∀𝑧:𝜏. (𝐶′ ◦ 𝑠) ∨ (𝐷 ◦ 𝑧) = ∀𝑧:𝜏. (𝐷′ ◦ 𝑠) ∨ (𝐷 ◦ 𝑧)
= ∀𝑧:𝜏. (𝑧1 = 𝑠1 ∧ · · · ∧ 𝑧𝑛 = 𝑠𝑛 → ⊥) ∨ (𝐷 ◦ 𝑧)
⇔ ∀𝑧:𝜏.𝑧1 = 𝑠1 ∧ · · · ∧ 𝑧𝑛 = 𝑠𝑛 → 𝐷 ◦ 𝑧
⇔ 𝐷 ◦ 𝑠 = 𝐶 ◦ 𝑠

CaseΥ is ℎ andΣ(ℎ) ≠ 𝐷. By hypothesis,Σ(ℎ) releases 𝐷. Let𝐶′′ denoteΣ(ℎ) after
replacing all occurrences of 𝐷 in its cell context with 𝐷′. We have 𝐶 ◦ ℓ = Σ(ℎ) ◦ ℓ ⇔
∀𝑧:𝜏. (𝐶′′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧) = ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧).

Case Υ is 0. Since the first component of 𝐶 is ⊤, we have 𝐶 ◦ 𝜀 = 𝐶′ ◦ 𝜀 = ⊤.
Case Υ is ♮Φ. Let Σ′′ be the result of replacing all occurrences of 𝐷 in ♮Σ with 𝐷′.

By induction hypothesis, 𝐶 ◦ ℓ = ⟨⊤, ♮Σ,Φ⟩ ◦ ℓ ⇔ ∀𝑧:𝜏. (⟨⊤, Σ′′,Φ⟩ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧).
Also, ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧) = ∀𝑧:𝜏. (⟨⊤, ♮Σ′,Φ⟩ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧). If 𝐷 is neutralized
(that is, 𝐷 = ♮𝐷), then 𝐷 ◦ 𝑧 ⇔ ⊤. If 𝐷 is not neutralized, then it cannot occur in ♮Σ,
and so Σ′′ = ♮Σ. Furthermore, ♮𝐷 ≡ ♮𝐷′, and consequently, ♮Σ′ ≡ ♮Σ.

Case Υ is ΦΨ and ⟨⊤, Σ,Ψ⟩ = 𝐷. Then Σ cannot contain 𝐷, and Σ′ = Σ. As the first
component of 𝐷 is ⊤ and Σ wraps around 𝐷, the cell 𝐷 is neutralized. Consequently,
♮𝐷 = 𝐷 and both cells release 𝐷 by Lemma 10. We obtain 𝐶 ◦ ℓ = ⟨⊤, Σ,Φ⟩ ◦ 𝐷, ℓ ⇔
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∀𝑧:𝜏. (⟨⊤, Σ,Φ⟩ ◦ 𝐷′, ℓ′) ∨ (𝐷 ◦ 𝑧) ⇔ ⊤ ⇔ ∀𝑧:𝜏. (⟨⊤, Σ,Φ⟩ ◦ 𝐷, ℓ′) ∨ (𝐷 ◦ 𝑧) ⇔
∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧).

Case Υ is ΦΨ and ⟨⊤, Σ,Ψ⟩ ≠ 𝐷. The cell ⟨⊤, Σ,Ψ⟩ releases 𝐷 by the induction
hypothesis, and so does its neutralization. Then 𝐶 ◦ ℓ = ⟨⊤, Σ,Φ⟩ ◦ ⟨⊤, Σ,Ψ⟩, ℓ ⇔
∀𝑧:𝜏. (⟨⊤, Σ′,Φ⟩ ◦ ⟨⊤, Σ′,Ψ⟩, ℓ′) ∨ (𝐷 ◦ 𝑧) ⇔ ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧).

Case Υ is Φ ∧ Ψ. Then we have

𝐶 ◦ ℓ = (⟨⊤, Σ,Φ⟩ ◦ ℓ) ∧ (⟨⊤, Σ,Ψ⟩ ◦ ℓ)
⇔ (∀𝑧:𝜏. (⟨⊤, Σ′,Φ⟩ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧)) ∧ (∀𝑧:𝜏. (⟨⊤, Σ′,Ψ⟩ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧))
⇔ ∀𝑧:𝜏. (⟨⊤, Σ′,Φ⟩ ◦ ℓ′ ∧ ⟨⊤, Σ′,Ψ⟩ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧)
⇔ ∀𝑧:𝜏. (𝐶′ ◦ ℓ′) ∨ (𝐷 ◦ 𝑧)

The rest of the cases are handled in a similar way. □

Lemma 12 (Lemma 6). Consider a cell 𝐶 = ⟨𝑏, Σ, λ𝑔:(𝑥:𝜏) .Φ⟩ and an aligned stack
𝐷, ℓ, such that none of 𝜏𝑖 is Type. Let 𝐷′ be ⟨⊥,∅, λ𝑥:𝜏. 𝑧1 = 𝑥1 ∧ · · · ∧ 𝑧𝑛 = 𝑥𝑛 → 0⟩
for some fresh variables 𝑧. Then 𝐶 ◦ 𝐷, ℓ ⇔ 𝐶 ◦ ♮𝐷, ℓ ∧∀𝑧:𝜏. (♮𝐶 ◦ 𝐷′, ♮ℓ) ∨ (𝐷 ◦ 𝑧).

Proof. By Lemma 4, 𝐶 ◦ 𝐷, ℓ ⇔ 𝐶 ◦ ♮𝐷, ℓ ∧ ♮𝐶 ◦ 𝐷, ♮ℓ. If 𝐷 is neutralized, then
𝐶 ◦𝐷, ℓ = 𝐶 ◦ ♮𝐷, ℓ and ♮𝐶 ◦𝐷, ♮ℓ ⇔ ⊤. Otherwise, 𝐷 does not occur in ♮𝐶 or ♮ℓ. We
conclude by Lemma 11, as neutralized cells wrap around any cell. □



30 Andrei Paskevich, Paul Patault, and Jean-Christophe Filliâtre

D Verification Condition Generation

Lemma 13. For any expression 𝑒 and term substitution 𝜎, we have ∁
𝔭

𝔡
(𝑒)𝜎 = ∁

𝔭

𝔡
(𝑒𝜎).

Proof. By structural induction over 𝑒. □

Lemma 14. For any expression 𝑒 and handler symbols 𝑓 , 𝑔, we have ∁
𝔭

𝔡
(𝑒) [𝑔 ↦→ 𝑓 ] =

∁
𝔭

𝔡
(𝑒[𝑔 ↦→ 𝑓 ]).

Proof. By structural induction over 𝑒. □

Lemma 15. Consider a cell 𝐶 of the form ⟨𝑏, Σ,Φ[𝑔 ↦→ 𝑓 ]⟩. Let 𝑏′ be an arbitrary
Boolean value, and Σ′ a cell context such that Σ′ ( 𝑓 ) = Σ( 𝑓 ). Then 𝐶 is equivalent to
⟨𝑏, Σ ⊎ [𝑔 ↦→ ⟨𝑏′, Σ′, 𝑓 ⟩],Φ⟩.

Proof. By structural induction over Φ. □

Lemma 16 (Lemma 7). For any expression 𝑒0, any cell 𝐷 = ⟨𝑏, Σ,∁⊥
⊥ (𝑒0)⟩ is neutral.

Proof. We proceed by induction over the size of 𝑒0, counting only the subexpressions,
so that term substitutions do not affect the size. Let ℓ be an aligned neutral stack. We
need to prove that the formula 𝐷 ◦ ℓ is valid.

Case 𝑒0 is ℎ. Then 𝐷 ◦ ℓ = ⟨𝑏, Σ, ♮ℎ⟩ ◦ ℓ = ⟨⊤, ♮Σ, ℎ⟩ ◦ ℓ and Lemma 1 applies.
Case 𝑒0 is 𝜋 → 𝑒. Then, for some cell context Σ′ and substitution 𝜎, we have

𝐷 ◦ ℓ = ⟨𝑏, Σ, (λ𝜋.∁⊥
⊥ (𝑒)) ∧ ♮ (λ𝜋.∁⊤

⊤ (𝑒))⟩ ◦ ℓ
= ⟨𝑏, Σ, λ𝜋.∁⊥

⊥ (𝑒)⟩ ◦ ℓ ∧ ⟨⊤, ♮Σ, λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ℓ

⇔ ⟨𝑏, Σ, λ𝜋.∁⊥
⊥ (𝑒)⟩ ◦ ℓ ∧ ⊤ (Lem. 1)

⇔ ⟨𝑏, Σ′,∁⊥
⊥ (𝑒)𝜎⟩ ◦ 𝜀

= ⟨𝑏, Σ′,∁⊥
⊥ (𝑒𝜎)⟩ ◦ 𝜀 (Lem. 13)

⇔ ⊤ (IH)

Case 𝑒0 is 𝑘 𝑠 𝑜. Then we have

𝐷 ◦ ℓ = ⟨𝑏, Σ,∁⊥
⊥ (𝑘) 𝑠 ∁⊥

⊥ (𝑜1) . . . ∁⊥
⊥ (𝑜𝑛)⟩ ◦ ℓ

= ⟨𝑏, Σ,∁⊥
⊥ (𝑘)⟩ ◦ 𝑠, ⟨𝑏, Σ,∁⊥

⊥ (𝑜1)⟩, . . . , ⟨𝑏, Σ,∁⊥
⊥ (𝑜𝑛)⟩, ℓ

Each cell ⟨𝑏, Σ,∁⊥
⊥ (𝑜𝑖)⟩ added to the stack is neutral by the induction hypothesis and

the neutralization of this cell is neutral by Lemma 1. Thus the new stack is neutral and
we conclude by the induction hypothesis.

Case 𝑒0 is {𝜑} 𝑒. The stack ℓ is empty and we have

𝐷 ◦ 𝜀 = ⟨𝑏, Σ, (𝜑 → ∁⊥
⊥ (𝑒)) ∧ (⊥ → ¬𝜑 → 0)⟩ ◦ 𝜀

= ⟨𝑏, Σ, 𝜑 → ∁⊥
⊥ (𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σ,⊥ → ¬𝜑 → 0⟩ ◦ 𝜀

= (𝜑 → ⟨𝑏, Σ,∁⊥
⊥ (𝑒)⟩ ◦ 𝜀) ∧ (⊥ → ¬𝜑 → ⟨𝑏, Σ, 0⟩ ◦ 𝜀)

⇔ (𝜑 → ⊤) ∧ (⊥ → ¬𝜑 → 𝑏) (IH)
⇔ ⊤∧ ⊤
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Case 𝑒0 is 𝑒 / ℎ 𝜋 = 𝑑. Let Σℎ be Σ ⊎ [ℎ ↦→ ⟨𝑏, Σ, λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩] and 𝑥:𝜏 the

term parameters in 𝜋. The stack ℓ is empty and, for some cell context Σ′, we have

𝐷 ◦ 𝜀 = ⟨𝑏, Σ, let ℎ 𝜋 = ∁⊤
⊥ (𝑑) in ∁⊥

⊥ (𝑒) ∧ ∀𝜋.∁⊥
⊥ (𝑑)⟩ ◦ 𝜀

= ⟨𝑏, Σℎ,∁
⊥
⊥ (𝑒) ∧ ∀𝜋.∁⊥

⊥ (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

⊥
⊥ (𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σℎ,∀𝜋.∁⊥

⊥ (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

⊥
⊥ (𝑒)⟩ ◦ 𝜀 ∧ ∀𝑥:𝜏. ⟨𝑏, Σ′,∁⊥

⊥ (𝑑)⟩ ◦ 𝜀
⇔ ⊤∧ ⊤ (IH)

Case 𝑒0 is ↑𝑒 or ↓𝑒. Then ∁⊥
⊥ (𝑒0) is ∁⊥

⊥ (𝑒), and the induction hypothesis applies. □

Corollary 4. Any cell of the form ⟨𝑏, Σ,∁⊤
⊤ (𝜋 → 𝑒)⟩ is equivalent to ⟨𝑏, Σ, λ𝜋.∁⊤

⊤ (𝑒)⟩.

Proof. For any aligned stack ℓ, there exist a cell context Σ′ and a term substitution 𝜎

such that

⟨𝑏, Σ,∁⊤
⊤ (𝜋 → 𝑒)⟩ ◦ ℓ = ⟨⊤, ♮Σ, (λ𝜋.∁⊤

⊤ (𝑒)) ∧ λ𝜋.∁⊥
⊥ (𝑒)⟩ ◦ ℓ

= ⟨𝑏, Σ, λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ℓ ∧ ⟨𝑏, Σ, ♮λ𝜋.∁⊥

⊥ (𝑒)⟩ ◦ ℓ
= ⟨𝑏, Σ, λ𝜋.∁⊤

⊤ (𝑒)⟩ ◦ ℓ ∧ ⟨⊤, Σ′,∁⊥
⊥ (𝑒)𝜎⟩ ◦ 𝜀

= ⟨𝑏, Σ, λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ℓ ∧ ⟨⊤, Σ′,∁⊥

⊥ (𝑒𝜎)⟩ ◦ 𝜀 (Lem. 13)
⇔ ⟨𝑏, Σ, λ𝜋.∁⊤

⊤ (𝑒)⟩ ◦ ℓ ∧ ⊤ (Lem. 7)
⇔ ⟨𝑏, Σ, λ𝜋.∁⊤

⊤ (𝑒)⟩ ◦ ℓ □

Lemma 17. For any Coma expression 𝑒0 and cell context Σ, the neutralized cells 𝐷1 =

⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑒0)⟩ and 𝐷2 = ⟨⊤, ♮Σ,∁¬𝔭

¬𝔡 (𝑒0)⟩ are equivalent.

Proof. We proceed by structural induction over 𝑒0. By Lemma 3, it suffices to prove
that 𝐷1 ◦ ℓ ⇔ 𝐷2 ◦ ℓ for any aligned stack ℓ.

Case 𝑒0 is ℎ. We can assume, without loss of generality, that 𝔭 is ⊤. Then we have
𝐷2 ◦ ℓ = ⟨⊤, ♮Σ, ♮ℎ⟩ ◦ ℓ = ⟨⊤, ♮♮Σ, ℎ⟩ ◦ ℓ = ⟨⊤, ♮Σ, ℎ⟩ ◦ ℓ = 𝐷1 ◦ ℓ, by the idempotence
of neutralization.

Case 𝑒0 is 𝜋 → 𝑒. Given that ♮♮Σ = ♮Σ, we have

𝐷1 ◦ ℓ = ⟨⊤, ♮Σ, (λ𝜋.∁𝔭

𝔡
(𝑒)) ∧ ♮ (λ𝜋.∁¬𝔭

¬𝔡 (𝑒))⟩ ◦ ℓ
= ⟨⊤, ♮Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ⟨⊤, ♮Σ, ♮λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ
= ⟨⊤, ♮♮Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ⟨⊤, ♮♮Σ, λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ
= ⟨⊤, ♮Σ, ♮λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ⟨⊤, ♮Σ, λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ
⇔ ⟨⊤, ♮Σ, ♮λ𝜋.∁¬¬𝔭

¬¬𝔡 (𝑒)⟩ ◦ ℓ ∧ ⟨⊤, ♮Σ, λ𝜋.∁¬𝔭
¬𝔡 (𝑒)⟩ ◦ ℓ

= ⟨⊤, ♮Σ, (λ𝜋.∁¬𝔭
¬𝔡 (𝑒)) ∧ ♮ (λ𝜋.∁¬¬𝔭

¬¬𝔡 (𝑒))⟩ ◦ ℓ
= 𝐷2 ◦ ℓ

Case 𝑒0 is 𝑘 𝑠 𝑜. Then we have 𝐷1 ◦ ℓ = ⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑘) 𝑠 ∁

𝔭

𝔡
(𝑜1) . . . ∁

𝔭

𝔡
(𝑜𝑛)⟩ ◦ ℓ =

⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑘)⟩ ◦ 𝑠, ⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑜1)⟩, . . . , ⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑜𝑛)⟩, ℓ. Each cell ⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑜𝑖)⟩
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is equivalent to ⟨⊤, ♮Σ,∁¬𝔭
¬𝔡 (𝑜𝑖)⟩ by induction hypothesis. These cells are neutralized,

hence the new stack is equivalent to 𝑠, ⟨⊤, ♮Σ,∁¬𝔭
¬𝔡 (𝑜1)⟩, . . . , ⟨⊤, ♮Σ,∁¬𝔭

¬𝔡 (𝑜𝑛)⟩, ℓ. Since
the cells ⟨⊤, ♮Σ,∁𝔭

𝔡
(𝑘)⟩ and ⟨⊤, ♮Σ,∁¬𝔭

¬𝔡 (𝑘)⟩ are also equivalent by induction hypothesis,
we obtain 𝐷1 ◦ ℓ ⇔ 𝐷2 ◦ ℓ by definition of cell equivalence.

In all other cases, the expression 𝑒0 is fully applied, and so are the cells 𝐷1 and 𝐷2.
Then the stack ℓ is empty, and 𝐷1 ◦ 𝜀 ⇔ ⊤ ⇔ 𝐷2 ◦ 𝜀 by Lemma 1. □

Lemma 18 (Lemma 8). Given any expression 𝑒0 and three cells 𝐷 = ⟨𝑏, Σ,∁⊤
⊤ (𝑒0)⟩,

𝐷1 = ⟨𝑏, Σ,∁𝔭

𝔡
(𝑒0)⟩, and 𝐷2 = ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑒0)⟩, the cell 𝐷 is a meet of 𝐷1 and 𝐷2.

Proof. By Lemma 17, we have ♮𝐷1 ≡ ♮𝐷2. We proceed by induction on the size of 𝑒0.
By Lemma 5, it suffices to prove that 𝐷 ◦ ℓ ⇔ 𝐷1 ◦ ℓ ∧ 𝐷2 ◦ ℓ for any aligned stack ℓ.

Case 𝑒0 is ℎ. We can assume, without loss of generality, that 𝔭 is ⊤. Then 𝐷 is the
same as 𝐷1, and 𝐷2 ◦ ℓ is equal to ♮𝐷1 ◦ ℓ. Then 𝐷 ◦ ℓ ⇔ 𝐷1 ◦ ℓ ∧ 𝐷2 ◦ ℓ by Lemma 4.

Case 𝑒0 is 𝜋 → 𝑒. Then, for some cell contexts Σ′, Σ′′ and term substitution 𝜎, which
are determined by 𝜋 and ℓ, we have

𝐷 ◦ ℓ = ⟨𝑏, Σ,∁⊤
⊤ (𝜋 → 𝑒)⟩ ◦ ℓ ⇔ ⟨𝑏, Σ, λ𝜋.∁⊤

⊤ (𝑒)⟩ ◦ ℓ (Cor. 4)
= ⟨𝑏, Σ′,∁⊤

⊤ (𝑒)𝜎⟩ ◦ 𝜀 = ⟨𝑏, Σ′,∁⊤
⊤ (𝑒𝜎)⟩ ◦ 𝜀 (Lem. 13)

⇔ ⟨𝑏, Σ′,∁
𝔭

𝔡
(𝑒𝜎)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σ′,∁

¬𝔭
¬𝔡 (𝑒𝜎)⟩ ◦ 𝜀 (IH)

= ⟨𝑏, Σ′,∁
𝔭

𝔡
(𝑒)𝜎⟩ ◦ 𝜀 ∧ ⟨𝑏, Σ′,∁

¬𝔭
¬𝔡 (𝑒)𝜎⟩ ◦ 𝜀 (Lem. 13)

= ⟨𝑏, Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ⟨𝑏, Σ, λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ
⇔ ⟨𝑏, Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ♮⟨𝑏, Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ (𝐶 ⇛ ♮𝐶)

⟨𝑏, Σ, λ𝜋.∁¬𝔭
¬𝔡 (𝑒)⟩ ◦ ℓ ∧ ♮⟨𝑏, Σ, λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ
⇔ ⟨𝑏, Σ, λ𝜋.∁𝔭

𝔡
(𝑒)⟩ ◦ ℓ ∧ ⟨𝑏, Σ, ♮λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ ∧
⟨𝑏, Σ, λ𝜋.∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ ℓ ∧ ⟨𝑏, Σ, ♮λ𝜋.∁¬¬𝔭
¬¬𝔡 (𝑒)⟩ ◦ ℓ

= ⟨𝑏, Σ, (λ𝜋.∁𝔭

𝔡
(𝑒)) ∧ ♮ (λ𝜋.∁¬𝔭

¬𝔡 (𝑒))⟩ ◦ ℓ ∧
⟨𝑏, Σ, (λ𝜋.∁¬𝔭

¬𝔡 (𝑒)) ∧ ♮ (λ𝜋.∁¬¬𝔭
¬¬𝔡 (𝑒))⟩ ◦ ℓ

= 𝐷1 ◦ ℓ ∧ 𝐷2 ◦ ℓ

Case 𝑒0 is {𝜑} 𝑒. Then the stack ℓ is empty and we have

𝐷 ◦ 𝜀 = ⟨𝑏, Σ, (𝜑 → ∁⊤
⊤ (𝑒)) ∧ (⊤ → ¬𝜑 → 0)⟩ ◦ 𝜀

= (𝜑 → ⟨𝑏, Σ,∁⊤
⊤ (𝑒)⟩ ◦ 𝜀) ∧ (⊤ → ¬𝜑 → 𝑏)

⇔ (𝜑 → (⟨𝑏, Σ,∁𝔭

𝔡
(𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑒)⟩ ◦ 𝜀)) ∧ (¬𝜑 → 𝑏) (IH)
⇔ (𝜑 → ⟨𝑏, Σ,∁𝔭

𝔡
(𝑒)⟩ ◦ 𝜀) ∧ (𝔭 → ¬𝜑 → 𝑏) ∧

(𝜑 → ⟨𝑏, Σ,∁¬𝔭
¬𝔡 (𝑒)⟩ ◦ 𝜀) ∧ (¬𝔭 → ¬𝜑 → 𝑏)

= ⟨𝑏, Σ, (𝜑 → ∁
𝔭

𝔡
(𝑒)) ∧ (𝔭 → ¬𝜑 → 0)⟩ ◦ 𝜀 ∧

⟨𝑏, Σ, (𝜑 → ∁
¬𝔭
¬𝔡 (𝑒)) ∧ (¬𝔭 → ¬𝜑 → 0)⟩ ◦ 𝜀

= 𝐷1 ◦ 𝜀 ∧ 𝐷2 ◦ 𝜀
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Case 𝑒0 is 𝑘 𝑠 𝑜. Then we have 𝐷 ◦ ℓ = ⟨𝑏, Σ,∁⊤
⊤ (𝑘) 𝑠 ∁⊤

⊤ (𝑜1) . . . ∁⊤
⊤ (𝑜𝑛)⟩ ◦ ℓ =

⟨𝑏, Σ,∁⊤
⊤ (𝑘)⟩ ◦ 𝑠, ⟨𝑏, Σ,∁⊤

⊤ (𝑜1)⟩, . . . , ⟨𝑏, Σ,∁⊤
⊤ (𝑜𝑛)⟩, ℓ, and similarly for 𝐷1 ◦ ℓ and

𝐷2◦ ℓ. Each cell ⟨𝑏, Σ,∁⊤
⊤ (𝑜𝑖)⟩ is a meet of the cells ⟨𝑏, Σ,∁𝔭

𝔡
(𝑜𝑖)⟩ and ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑜𝑖)⟩
by induction hypothesis, and the same is true for their respective neutralizations. Fur-
thermore, the cell ⟨𝑏, Σ,∁⊤

⊤ (𝑘)⟩ is also a meet of ⟨𝑏, Σ,∁𝔭

𝔡
(𝑘)⟩ and ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑘)⟩ by
induction hypothesis. Then 𝐷 ◦ ℓ ⇔ 𝐷1 ◦ ℓ ∧ 𝐷2 ◦ ℓ.

Case 𝑒0 is 𝑒 / ℎ 𝜋 = 𝑑. Let Σℎ be Σ ⊎ [ℎ ↦→ ⟨𝑏, Σ, λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩] and 𝑥:𝜏 be

the term parameters in 𝜋. The stack ℓ is empty and, for some cell context Σ′, which is
determined by 𝜋, we have

𝐷 ◦ 𝜀 = ⟨𝑏, Σ, let ℎ 𝜋 = ∁⊤
⊥ (𝑑) in ∁⊤

⊤ (𝑒) ∧ ∀𝜋.∁⊥
⊤ (𝑑)⟩ ◦ 𝜀

= ⟨𝑏, Σℎ,∁
⊤
⊤ (𝑒) ∧ ∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σℎ,∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ ∀𝑥:𝜏. ⟨𝑏, Σ′,∁⊥

⊤ (𝑑)⟩ ◦ 𝜀
⇔ ⟨𝑏, Σℎ,∁

𝔭

𝔡
(𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σℎ,∁

¬𝔭
¬𝔡 (𝑒)⟩ ◦ 𝜀 ∧ ∀𝑥:𝜏. ⟨𝑏, Σ′,∁⊥

⊤ (𝑑)⟩ ◦ 𝜀 (IH)
⇔ ⟨𝑏, Σℎ,∁

𝔭

𝔡
(𝑒)⟩ ◦ 𝜀 ∧ ∀𝑥:𝜏. ⟨𝑏, Σ′,∁⊥

𝔭 (𝑑)⟩ ◦ 𝜀 ∧ (Lem. 7)
⟨𝑏, Σℎ,∁

¬𝔭
¬𝔡 (𝑒)⟩ ◦ 𝜀 ∧ ∀𝑥:𝜏. ⟨𝑏, Σ′,∁⊥

¬𝔭 (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

𝔭

𝔡
(𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σℎ,∀𝜋.∁⊥

𝔭 (𝑑)⟩ ◦ 𝜀 ∧
⟨𝑏, Σℎ,∁

¬𝔭
¬𝔡 (𝑒)⟩ ◦ 𝜀 ∧ ⟨𝑏, Σℎ,∀𝜋.∁⊥

¬𝔭 (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σℎ,∁

𝔭

𝔡
(𝑒) ∧ ∀𝜋.∁⊥

𝔭 (𝑑)⟩ ◦ 𝜀 ∧
⟨𝑏, Σℎ,∁

¬𝔭
¬𝔡 (𝑒) ∧ ∀𝜋.∁⊥

¬𝔭 (𝑑)⟩ ◦ 𝜀
= ⟨𝑏, Σ, let ℎ 𝜋 = ∁⊤

⊥ (𝑑) in ∁
𝔭

𝔡
(𝑒) ∧ ∀𝜋.∁⊥

𝔭 (𝑑)⟩ ◦ 𝜀 ∧
⟨𝑏, Σ, let ℎ 𝜋 = ∁⊤

⊥ (𝑑) in ∁
¬𝔭
¬𝔡 (𝑒) ∧ ∀𝜋.∁⊥

¬𝔭 (𝑑)⟩ ◦ 𝜀
= 𝐷1 ◦ 𝜀 ∧ 𝐷2 ◦ 𝜀

Case 𝑒0 is ↑𝑒 or ↓𝑒. Straightforward by the induction hypothesis. □

Theorem 5 (Theorem 3). For any Coma programs 𝑒1 and 𝑒2, if 𝑒1 is correct and
𝑒1 −→ 𝑒2, then 𝑒2 is correct.

Proof. Given a sequence of handler definitions Λ, we define a cell context ΣΛ and a
formula 𝜓Λ recursively as follows:

Σ𝜀 ≜ Σprim Σℎ𝜋=𝑑,Λ ≜ ΣΛ ⊎ [ℎ ↦→ ⟨⊥, ΣΛ, λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩]

𝜓𝜀 ≜ ⊤ 𝜓ℎ𝜋=𝑑,Λ ≜ ⟨⊥, Σℎ𝜋=𝑑,Λ,∀𝜋.∁⊥
⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

Informally, ΣΛ results from adding to Σprim the specifications of handlers defined in Λ,
and 𝜓Λ is a conjunction of proof obligations for these handler definitions. We can show
by structural induction that for any program 𝑒//Λ, the formula ⟨⊥, Σprim,∁⊤

⊤ (𝑒//Λ)⟩ ◦𝜀
is logically equivalent to ⟨⊥, ΣΛ,∁⊤

⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ.
We proceed by case analysis of the evaluation step 𝑒1 −→ 𝑒2. Provided that 𝑒1 is of

the form 𝑒//Λ and 𝑒2 of the form 𝑒′ //Λ, we need to show that ⟨⊥, ΣΛ,∁⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ

entails ⟨⊥, ΣΛ,∁⊤
⊤ (𝑒′)⟩ ◦ 𝜀 ∧ 𝜓Λ.
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Case E-Sym. Then 𝑒1 is of the form ℎ 𝑠 𝑜 //Λ and 𝑒2 of the form (𝜋 → 𝑑) 𝑠 𝑜 //Λ.
Let ℓ denote the stack 𝑠, ⟨⊥, ΣΛ,∁⊤

⊤ (𝑜1)⟩, . . . , ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜𝑛)⟩. Assuming that the type

signature 𝜋 is of the form 𝑥:𝜏 𝑔:𝜚, let 𝜎 be the term substitution [𝑥 ↦→ 𝑠] and Σ′ the
cell context ΣΛ ⊎ [𝑔1 ↦→ ⟨⊥, ΣΛ,∁⊤

⊤ (𝑜1)⟩, . . . , 𝑔𝑛 ↦→ ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜𝑛)⟩]. Assuming that

Λ is of the form Λ1, ℎ 𝜋 = 𝑑,Λ2, we obtain

⟨⊥, ΣΛ,∁
⊤
⊤ (ℎ 𝑠 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ,∁
⊤
⊤ (ℎ)⟩ ◦ ℓ ∧ 𝜓Λ

= ⟨⊥, ΣΛ2 , λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩ ◦ ℓ ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ2 , λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩ ◦ ℓ ∧ ⟨⊥, Σℎ𝜋=𝑑,Λ2 ,∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ, λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩ ◦ ℓ ∧ ⟨⊥, ΣΛ,∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

⇒ ⟨⊥, ΣΛ, λ𝜋.∀ℎ:𝜋.∁⊤
⊥ (𝑑)⟩ ◦ ℓ ∧ ⟨⊥, ΣΛ, λ𝜋.∁

⊥
⊤ (𝑑)⟩ ◦ ℓ ∧ 𝜓Λ (Thm. 2)

⇔ ⟨⊥, Σ′,∀ℎ:𝜋.∁⊤
⊥ (𝑑𝜎)⟩ ◦ 𝜀 ∧ ⟨⊥, Σ′,∁⊥

⊤ (𝑑𝜎)⟩ ◦ 𝜀 ∧ 𝜓Λ (Lem. 13)
⇒ ⟨⊥, Σ′,∁⊤

⊥ (𝑑𝜎)⟩ ◦ 𝜀 ∧ ⟨⊥, Σ′,∁⊥
⊤ (𝑑𝜎)⟩ ◦ 𝜀 ∧ 𝜓Λ (Thm. 2)

⇔ ⟨⊥, Σ′,∁⊤
⊤ (𝑑𝜎)⟩ ◦ 𝜀 ∧ 𝜓Λ (Lem. 8)

= ⟨⊥, ΣΛ, λ𝜋.∁
⊤
⊤ (𝑑)⟩ ◦ ℓ ∧ 𝜓Λ (Lem. 13)

⇔ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝜋 → 𝑑)⟩ ◦ ℓ ∧ 𝜓Λ (Cor. 4)

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑑) 𝑠 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

Case E-AppT. Then 𝑒1 is of the form ((𝑥:𝜏) 𝜋 → 𝑒) 𝑡 𝑠 𝑜 //Λ and 𝑒2 is of the form
(𝜋 → 𝑒) [𝑥 ↦→ 𝑡] 𝑠 𝑜 //Λ. Let ℓ stand for 𝑠, ⟨⊥, ΣΛ,∁⊤

⊤ (𝑜1)⟩, . . . , ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜𝑛)⟩. Then

⟨⊥, ΣΛ,∁
⊤
⊤ (((𝑥:𝜏) 𝜋 → 𝑒) 𝑡 𝑠 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝑥:𝜏) 𝜋 → 𝑒)⟩ ◦ 𝑡, ℓ ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ, λ𝑥:𝜏.λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ 𝑡, ℓ ∧ 𝜓Λ (Cor. 4)

= ⟨⊥, ΣΛ, (λ𝜋.∁⊤
⊤ (𝑒)) [𝑥 ↦→ 𝑡]⟩ ◦ ℓ ∧ 𝜓Λ

= ⟨⊥, ΣΛ, λ𝜋[𝑥 ↦→ 𝑡] .∁⊤
⊤ (𝑒[𝑥 ↦→ 𝑡])⟩ ◦ ℓ ∧ 𝜓Λ (Lem. 13)

⇔ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝜋 → 𝑒) [𝑥 ↦→ 𝑡]⟩ ◦ ℓ ∧ 𝜓Λ (Cor. 4)

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑒) [𝑥 ↦→ 𝑡])⟩ ◦ ℓ ∧ 𝜓Λ (Lem. 13)

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑒) [𝑥 ↦→ 𝑡] 𝑠 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

Case E-AppH. Then 𝑒1 is of the form ((𝑔:𝜚) 𝜋 → 𝑒) 𝑓 𝑜 //Λ and 𝑒2 is of the form
(𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ] 𝑜 //Λ. Let ℓ stand for ⟨⊥, ΣΛ,∁⊤

⊤ (𝑜1)⟩, . . . , ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜𝑛)⟩. Then

⟨⊥, ΣΛ,∁
⊤
⊤ (((𝑔:𝜚) 𝜋 → 𝑒) 𝑓 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝑔:𝜚) 𝜋 → 𝑒)⟩ ◦ ⟨⊥, ΣΛ,∁

⊤
⊤ ( 𝑓 )⟩, ℓ ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ, λ𝑔:𝜚.λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ⟨⊥, ΣΛ,∁

⊤
⊤ ( 𝑓 )⟩, ℓ ∧ 𝜓Λ (Cor. 4)

= ⟨⊥, ΣΛ ⊎ [𝑔 ↦→ ⟨⊥, ΣΛ, 𝑓 ⟩], λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ℓ ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ ⊎ [𝑔 ↦→ ⟨⊥, ΣΛ, 𝑓 ⟩],∁⊤
⊤ (𝜋 → 𝑒)⟩ ◦ ℓ ∧ 𝜓Λ (Cor. 4)

⇔ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ]⟩ ◦ ℓ ∧ 𝜓Λ (Lem. 15)

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ])⟩ ◦ ℓ ∧ 𝜓Λ (Lem. 14)

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ] 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ
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Case E-AppC. Then 𝑒1 is of the form ((𝑔:𝜚) 𝜋 → 𝑒) (𝜚 → 𝑑 ) 𝑜 //Λ and 𝑒2 of the
form (𝜋 → 𝑒) 𝑜 /𝑔 𝜚 = ↓ 𝑑 //Λ, assuming that 𝑔 does not occur freely in 𝑑 or in 𝑜. Let
Σ′ denote the cell context Σ𝑔𝜚=↓𝑑,Λ = ΣΛ ⊎ [𝑔 ↦→ ⟨⊥, ΣΛ, λ𝜚.∀𝑔:𝜚.∁⊤

⊥ (↓ 𝑑)⟩]. It is
easy to show that the stack ℓ = ⟨⊥, ΣΛ,∁⊤

⊤ (𝑜1)⟩, . . . , ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜𝑛)⟩ is equivalent to

the stack ℓ′ = ⟨⊥, Σ′,∁⊤
⊤ (𝑜1)⟩, . . . , ⟨⊥, Σ′,∁⊤

⊤ (𝑜𝑛)⟩. Then we have

⟨⊥, ΣΛ,∁
⊤
⊤ (((𝑔:𝜚) 𝜋 → 𝑒) (𝜚 → 𝑑 ) 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝑔:𝜚) 𝜋 → 𝑒)⟩ ◦ ⟨⊥, ΣΛ,∁

⊤
⊤ (𝜚 → 𝑑 )⟩, ℓ ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ, λ𝑔:𝜚.λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ⟨⊥, ΣΛ, λ𝜚.∁

⊤
⊤ (𝑑)⟩, ℓ ∧ 𝜓Λ (Cor. 4)

⇔ ⟨⊥, ΣΛ, λ𝑔:𝜚.λ𝜋.∁⊤
⊤ (𝑒)⟩ ◦ ⟨⊥, ΣΛ, λ𝜚.∀𝑔:𝜚.∁⊤

⊥ (↓ 𝑑)⟩, ℓ ∧ 𝜓Λ (*)
= ⟨⊥, Σ′, λ𝜋.∁⊤

⊤ (𝑒)⟩ ◦ ℓ ∧ 𝜓Λ

⇔ ⟨⊥, Σ′,∁⊤
⊤ (𝜋 → 𝑒)⟩ ◦ ℓ ∧ 𝜓Λ (Cor. 4)

⇔ ⟨⊥, Σ′,∁⊤
⊤ (𝜋 → 𝑒)⟩ ◦ ℓ ∧ ⟨⊥, Σ′,∀𝜚.∁⊥

⊥ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ (Lem. 7)
⇔ ⟨⊥, Σ′,∁⊤

⊤ (𝜋 → 𝑒)⟩ ◦ ℓ′ ∧ ⟨⊥, Σ′,∀𝜚.∁⊥
⊤ (↓ 𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ (ℓ ≡ ℓ′)

= ⟨⊥, Σ′,∁⊤
⊤ (𝜋 → 𝑒) 𝑜 ∧ ∀𝜚.∁⊥

⊤ (↓ 𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ, let 𝑔 𝜚 = ∁⊤
⊥ (↓ 𝑑) in ∁⊤

⊤ (𝜋 → 𝑒) 𝑜 ∧ ∀𝜚.∁⊥
⊤ (↓ 𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ,∁
⊤
⊤ ((𝜋 → 𝑒) 𝑜 /𝑔 𝜚 = ↓ 𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

On the step marked (*), we can safely introduce the universal quantifier over 𝑔, since
this handler symbol does not occur in ∁⊤

⊤ (𝑑).
Case E-Void. Then 𝑒1 is of the form □ → 𝑒 //Λ and 𝑒2 of the form 𝑒 //Λ. We have

⟨⊥, ΣΛ,∁⊤
⊤ (□ → 𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ ⇔ ⟨⊥, ΣΛ,∁⊤

⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ by Corollary 4.
Case E-Prop. Then 𝑒1 is of the form {𝜑} 𝑒 //Λ, where the formula 𝜑 is valid, and

𝑒2 is of the form 𝑒 //Λ. We obtain

⟨⊥, ΣΛ,∁
⊤
⊤ ({𝜑} 𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ, (𝜑 → ∁⊤
⊤ (𝑒)) ∧ (⊤ → ¬𝜑 → 0)⟩ ◦ 𝜀 ∧ 𝜓Λ

= (𝜑 → ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑒)⟩ ◦ 𝜀) ∧ (⊤ → ¬𝜑 → ⊥) ∧ 𝜓Λ

⇔ (𝜑 → ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑒)⟩ ◦ 𝜀) ∧ 𝜑 ∧ 𝜓Λ

⇒ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ

Case E-Gc. Then 𝑒1 is of the form 𝑒 / ℎ 𝜋 = 𝑑 //Λ, where ℎ does not occur in 𝑒, and
𝑒2 is 𝑒 //Λ. Let Σ′ stand for Σℎ𝜋=𝑑,Λ = ΣΛ ⊎ [ℎ ↦→ ⟨⊥, ΣΛ, λ𝜋.∀ℎ:𝜋.∁⊤

⊥ (𝑑)⟩]. Then

⟨⊥, ΣΛ,∁
⊤
⊤ (𝑒 / ℎ 𝜋 = 𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, ΣΛ, let ℎ 𝜋 = ∁⊤
⊥ (𝑑) in ∁⊤

⊤ (𝑒) ∧ ∀𝜋.∁⊥
⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, Σ′,∁⊤
⊤ (𝑒) ∧ ∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥, Σ′,∁⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ ⟨⊥, Σ′,∀𝜋.∁⊥

⊤ (𝑑)⟩ ◦ 𝜀 ∧ 𝜓Λ

⇒ ⟨⊥, Σ′,∁⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ

⇔ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ (ℎ does not occur in 𝑒)

Cases E-Bbox and E-Wbox are trivial.
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The rest of the cases correspond to the use of primitive handlers. For example, let
expression 𝑒1 be of the form if 𝑠 𝑘 𝑜 //Λ. Then we have

⟨⊥, ΣΛ,∁
⊤
⊤ (if 𝑠 𝑘 𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ

= ⟨⊥,∅,Ψif⟩ ◦ 𝑠, ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑘)⟩, ⟨⊥, ΣΛ,∁

⊤
⊤ (𝑜)⟩ ∧ 𝜓Λ

= ⟨⊥, [then ↦→ ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑘)⟩, else ↦→ ⟨⊥, ΣΛ,∁

⊤
⊤ (𝑜)⟩],

(𝑠 → then) ∧ (¬𝑠 → else)⟩ ◦ 𝜀 ∧ 𝜓Λ

= (𝑠 → ⟨⊥, ΣΛ,∁
⊤
⊤ (𝑘)⟩ ◦ 𝜀) ∧ (¬𝑠 → ⟨⊥, ΣΛ,∁

⊤
⊤ (𝑜)⟩ ◦ 𝜀) ∧ 𝜓Λ

Depending on whether we progressed along the first or the second rule for if, the last
formula entails either ⟨⊥, ΣΛ,∁⊤

⊤ (𝑘)⟩ ◦ 𝜀 ∧ 𝜓Λ or ⟨⊥, ΣΛ,∁⊤
⊤ (𝑜)⟩ ◦ 𝜀 ∧ 𝜓Λ.

The applications of unTree and get are treated in the similar way. □

Theorem 6 (Theorem 4). For any correct Coma program 𝑒1, either 𝑒1 is halt, or
𝑒1 −→ 𝑒2 for some program 𝑒2.

Proof. Here we only consider the premise of the E-Prop rule, as well as the premises of
the evaluation rules for the primitive handlers—the rest of the proof is straightforward.
Just like in the proof of Theorem 3, we will use the fact that for any program 𝑒//Λ, the
formula ⟨⊥, Σprim,∁⊤

⊤ (𝑒//Λ)⟩ ◦ 𝜀 is logically equivalent to ⟨⊥, ΣΛ,∁⊤
⊤ (𝑒)⟩ ◦ 𝜀 ∧ 𝜓Λ.

Then we can easily show that the premise of E-Prop, as well as the first premise of
the evaluation rule for get, are logical consequences of the verification condition of 𝑒1.
Furthermore, the standard model for Booleans, integers, binary trees, and sequences,
which we adopt for our semantics, guarantees that every ground Boolean term is either
⊤ or ⊥, every ground term of type tree 𝜏 is either a Node or an Empty, every sequence
contains an element for every valid index, etc. □
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